RPKI Deployathon

Philip Smith NSRC

Summary & Findings 18th February 2020

RPKI Deployathon: Agenda

- □ Session 1:
 - Why Routing Security Tashi Phuntsho
 - A look at ROAs Tashi Phuntsho
- □ Session 2:
 - Deploying Validators
- □ Session 3:
 - Deploying RPKI on routers
- Session 4:
 - Deploying ROV and exploring interoperability

Helpers:

Tashi Phuntsho – APNIC Aftab Siddiqui – ISOC Mark Tinka – SEACOM Warren Finch – APNIC Taiji Kimura – JPNIC Md Abdul Awal – NSRC

Deploying Validators

- 2 containers per group (of 4) for validator install
- Four well known validators chosen:
 - NLnetLabs Routinator
 - RIPE NCC Validator
 - Cloudflare OktoRPKI
 - FORT
- Unfortunately Dragon Labs validator no longer maintained ⁽³⁾

Deploying Validators: Routinator

- Easy to install, even though participants had never worked with Rust before
- Routinator documentation was easy to follow
- APNIC Training guide was useful supplement to the Routinator documentation
- Routinator worked well, quick, and small memory footprint
- Easy to enable for Prometheus UI for monitoring
- Conclusion: the clear favourite, it just worked

Deploying Validators: RIPE NCC

- Initially participants followed the development version
 - Failed to set up as Linux version (Ubuntu 16.04) wasn't correct
 - No mention of what was actually required to set it up
- Following standard version (v3) was easy to install
 - Couldn't connect to router
 - No documentation explaining that dependencies required
 - Huge memory foot print (6Gbytes!)
- Once the RTR support was installed, connection to routers was easy
- Conclusion: set up and installation of validator was not straightforward – hard to convince people to use this one

Deploying Validators: OctoRPKI

- Installation was not straightforward at all
 - Even following the documentation
 - Instructions not clear
- Installing Docker version would have been easier
 - Again not clearly defined how and what to do
- Eventually participants used 3 different sets of instructions available online to install the validator
 - No mention that goRTR had to be installed as well
- OctoRPKI install was straightforward only by following the APNIC Training guide
- Conclusion: hard work

Deploying Validators: FORT

Big problem with dependencies

- Ubuntu 16.04 has too old version of OpenSSL
- Participants had to compile up the version supported by FORT, which then broke other dependencies, etc.
- No mention of the problem or solution in the install instructions
- No instructions about the ARIN TAL and how to install
 - Luckily APNIC Training guide covered how to do this
- Conclusion: dependency problem and ARIN TAL problem

Deploying RPKI on Routers

Mix of real hardware and virtual environment

- Cisco, Juniper, Nokia
 - Couldn't get Cisco IOS XR virtual environment running; only Cisco IOS-XE available
- Didn't manage to get an Arista router
- No one tried BIRD or FRR even though it was suggested to the participants

Observations

Router talking to validator set up was easy, no issues noted

Router Implementation Observations

Cisco IOS-XE seriously broken

Drops invalids automatically: workaround

bgp bestpath prefix-validate allow-invalid

- Prefixes distributed by iBGP automatically marked Valid
 No workaround until more recent IOS releases
- If validator becomes unreachable, the RPKI table was flushed within 5 minutes, despite ROA lifetime
 Not configurable
 - Only RPKI table refresh time is configurable

Router Implementation Observations

Juniper:

- Setting up to talk to validator well documented online
- Keeps RPKI table for 3600sec (in case of losing connection to validator)
 Can be configured
 - Life time is 6 hours in ROAs so the implementations should flush before then
- Maintains state of the validation table across multiple routing engines

Nokia

- Easy to set up, good instructions
- RPKI table kept for max 3600sec (in case of losing connection to validator)

How to set longer??

Maintains state of the validation table across multiple routing engines

Other Observations

Propagating validation state:

- Many say don't do this keep it simple
- But if we do want to, RFC8097 has this:

Extended Community	Meaning
0x4300:0:0	Valid
0x4300:0:1	NotFound
0x4300:0:2	Invalid

- JunOS from 17.4R3, 18.2R3, 18.4R2 supports this
 - The MX204s we had came with 17.4R2.4 code, so didn't work, needing upgrade

Other Observations

Difference between two validators

- FORT and Cloudflare validators had different total VRPs
 FORT missing around 1200
- RIPE NCC and Routinator had the almost exact same total VRPs
 That's a relief

What does this mean in real life?

- What does the router best path selection do?
- (Cisco inserts validation before local-preference)
- Untested, but we need to answer this

Diff FORT & OctoRPKI

root@group53:/tmp# diff -u octo.csv fort.csv --- octo.csv 2020-02-17 06:14:50.303636011 +0000 +++ fort csv 2020-02-17 06:13:48.901343682 +0000 @@ -11674,7 +11674,6 @@ AS135134,2403:cfc0:100e::/48,48 AS135134,2403:cfc0:100f::/48,48 AS135134,2403:cfc0:1100::/44,48 -AS135134,2a0d:1a40:babe::/48,48 AS135134, 45.129.228.0/24, 24 AS135139, 103.114.208.0/22, 22 AS135139,103.114.208.0/23,23 @@ -33377,12 +33376,10 @@ AS202306,45.138.74.0/24,24 AS202306,91.103.252.0/24,24 AS202307,2a0b:b87:ffe9::/48,48 -AS202313,2a0d:1a40:fa0::/44,48 AS202314,2a06:1e86::/32,48 AS202314,2a0a:b707:1004::/48,48 AS202314,2a0a:b707:1010::/44,48 AS202314,2a0a:b707:1012::/48,48 -AS202314,2a0d:1a40:5550::/48,48 AS202317,92.255.52.0/24,24 AS202319,185.166.104.0/24,24 AS202319, 185.166.105.0/24, 24

@@ -35119,7 +35116,6 @@ AS204512,2a0e:9000::/32,32 AS204521,185.168.216.0/24,24 AS204526,2001:678:a10::/48,48 -AS204526,2a0d:1a44::/32,48 AS204526,2a0e:fd44::/32,48 AS204528, 178.175.235.0/24, 24 AS204529,185.114.218.0/24,24 @@ -38901,7 +38897,6 @@ AS207948,2001:7f8:e3::/48,48 AS20795,193.109.96.0/22,22 AS207955,2a0e:46c6:300::/40,48 -AS207960,2a0d:1a40:7900::/40,48 AS207963,2a0f:5707:ad00::/44,48 AS207963,2a0f:5707:ad01::/48,48 AS207967,45.87.244.0/22,22 @@ -39406,7 +39401,6 @@ AS208481,45.176.188.0/22,22 AS208481,45.8.172.0/22,24 AS208483,2a09:be40:3000::/40,48 -AS208483,2a0d:1a40:666::/48,48 AS208485, 160.19.94.0/24, 24 AS208485,160.19.95.0/24,24 etc

Other Observations

Cisco IOS/IOS-XE behaviour – example:

- Prefix learned via two paths via two separate EBGP speaking routers
- Prefix and validation state distributed by IBGP to core router (route reflector):

Network	Next Hop	Metric	LocPrf	Weight	Path
V*>i 61.45.249.0/24	100.68.1.1	0	50	0	121 20 135534 i
N* i	100.68.1.3	0	200	0	20 135534 i
V*>i 61.45.250.0/24	100.68.1.1	0	50	0	121 30 135535 i
N* i	100.68.1.3	0	150	0	30 135535 i
V*>i 61.45.251.0/24	100.68.1.1	0	50	0	121 122 40 135536 i
N* i	100.68.1.3	0	150	0	40 135536 i

- One EBGP speaking router talks with validator
- The other EBGP speaking router does not (due to error or design)
- Core router best path selection prefers valid path over not found even if the latter has higher local preference

Conclusion

Situation with validators better than September 2019

- Thanks RIPE NCC for improving docs but install process still not simple and needs work
- Dragon Labs validator, anyone?
- Differences in VRPs is worrying

Cisco IOS-XE default behaviour remains a serious worry

 Advice: turn off the defaults if possible, and lobby Cisco to fix this serious problem

Untested

- Issues with path selection?
- Validator deployment best practices?