Simple Multihoming

ISP Workshops

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Last updated 29th July 2019

Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

Philip Smith

Agenda

- Why Multihome?
- **D** The Multihoming Toolset
- How to Multihome Options
- Multihoming to the same AS
- Multihoming to different ASes

Redundancy

- One connection to Internet means the network is dependent on:
 - Local router (configuration, software, hardware)
 - WAN media (physical failure, carrier failure)
 - Upstream Service Provider (configuration, software, hardware)

Reliability

- Business critical applications demand continuous availability
- Lack of redundancy implies lack of reliability implies loss of revenue

Supplier Diversity

 Many businesses demand supplier diversity as a matter of course

Internet connection from two or more suppliers

- With two or more diverse WAN paths
- With two or more exit points
- With two or more international connections

Two of everything

- Changing upstream provider
- With one upstream, migration means:
 - Disconnecting existing connection
 - Moving the link to the new upstream
 - Reconnecting the link
 - Reannouncing address space
 - Break in service for end users (hours, days,...?)
- With two upstreams, migration means:
 - Bring up link with new provider (including BGP and address announcements)
 - Disconnect link with original upstream
 - No break in service for end users

- Not really a reason, but oft quoted...
- □ Leverage:
 - Playing one upstream provider off against the other for:
 - Service Quality
 - Service Offerings
 - Availability

u Summary:

- Multihoming is easy to demand as requirement of any operation
- But what does it really mean:
 - In real life?
 - For the network?
 - For the Internet?
- And how do we do it?

Multihoming Definition

More than one link external to the local network

- Two or more links to the same AS
- Two or more links to different ASes
- Usually two external facing routers
 - One router gives link and provider redundancy only

Multihoming

- The scenarios described here apply equally well to:
 - End-sites being customers of network operators and
 - Network operators being customers of other network operators

Implementation details may be different, for example:

- End site \rightarrow ISP
- ISP1 \rightarrow ISP2

Configuration on End-Site Network Operators share config

Multihoming: Number Resources

- BGP handles the relationship between Autonomous Systems
 - Each autonomous system is represented by an Autonomous System Number (ASN)
 - Each multihoming organisation requires their own unique ASN
- Address space (IPv4/IPv6) for each autonomous system comes from either:

or

- Their upstream
- A Regional Internet Registry

Autonomous System Number (ASN)

Range:	
0-4294967295	(32-bit range – RFC6793)
	(0-65535 was original 16-bit range
Usage:	
0 and 65535	(reserved)
1-64495	(public Internet)
64496-64511	(documentation – RFC5398)
64512-65534	(private use only)
23456	(represent 32-bit range in 16-bit world)
65536-65551	(documentation – RFC5398)
65552-4199999999	(public Internet)
420000000-4294967295	(private use only)

□ 32-bit range representation specified in RFC5396

Defines "asplain" (traditional format) as standard notation

Autonomous System Number

ASNs are distributed by the Regional Internet Registries

They are also available from upstream ISPs who are members of one of the RIRs

□ The entire 16-bit ASN pool has been assigned to the RIRs

- Around 42200 16-bit ASNs are visible on the Internet
- Each RIR has also received a block of 32-bit ASNs
 - Out of 28000 assignments, around 22800 are visible on the Internet (July 2019)
- See www.iana.org/assignments/as-numbers

IP Addressing

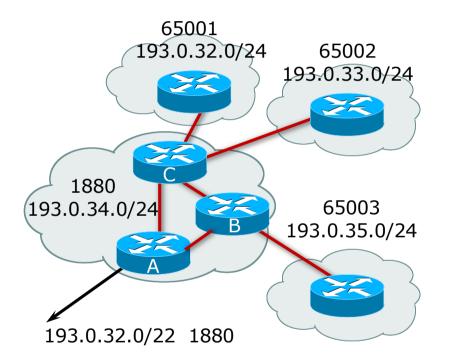
- IP addresses are also distributed by the Regional Internet Registries
 - They are also available from upstream providers who are members of one of the RIRs
- The entire IPv4 address pool has been almost exhausted
 - The RIRs are operating in "IPv4 runout" mode now
- IPv6 address space is plentiful
 - Network operators receive at least a /32
 - End sites/users receive at least a /48

Where to get Internet Numbering Resources

- Your upstream provider
- Africa
 - AfriNIC http://www.afrinic.net
- Asia and the Pacific
 - APNIC http://www.apnic.net
- North America
 - ARIN http://www.arin.net
- Latin America and the Caribbean
 - LACNIC http://www.lacnic.net
- Europe and Middle East
 - RIPE NCC http://www.ripe.net/info/ncc

Internet Registry Regions

Private AS – Application


 A network operator with endsites multihomed on their backbone (RFC2270)

or

 A corporate network with several regions but connections to the Internet only in the core

or

Within a BGP Confederation

Private-AS – Removal

- Private ASNs MUST be removed from all prefixes announced to the public Internet
 - Include configuration to remove private ASNs in the eBGP template
- As with RFC1918 address space, private ASNs are intended for internal use
 - They must not be leaked to or used on the public Internet

Cisco IOS

```
neighbor x.x.x.x remove-private-AS
```

More Definitions

Transit

- Carrying traffic across a network
- Usually for a fee

Peering

- Exchanging routing information and traffic
- Usually for no fee

Sometimes called settlement free peering

Default

Where to send traffic when there is no explicit match in the routing table

Configuring Policy – Cisco IOS

□ Assumptions:

- Prefix-lists are used throughout
- Easier/better/faster than access-lists
- □ Three BASIC Principles
 - Prefix-lists to filter prefixes
 - Filter-lists to filter ASNs
 - Route-maps to apply policy

Route-maps can be used for filtering, but this is more "advanced" configuration

Policy Tools

- Local preference
 - Outbound traffic flows
- Metric (MED)
 - Inbound traffic flows (local scope)
- AS-PATH prepend
 - Inbound traffic flows (Internet scope)
- Subdividing Aggregates
 - Inbound traffic flows (local & Internet scope)
- Communities
 - Specific inter-provider peering

Originating Prefixes: Assumptions

- MUST announce assigned address block to Internet
- MAY also announce subprefixes reachability is not guaranteed
- Minimum allocations:
 - IPv4 is /24
 - IPv6 is /48 (endsite) and /32 (operator)
 - Several Network Operators filter RIR blocks on published minimum allocation boundaries
 - Several Network Operators filter the rest of address space according to the IANA assignments
 - This activity is called "Net Police" by some

Originating Prefixes

- □ The RIRs publish their minimum allocation sizes per /8 address block
 - AfriNIC: www.afrinic.net/library/policies/126-afpub-2005-v4-001
 - APNIC: www.apnic.net/db/min-alloc.html
 - ARIN: www.arin.net/reference/ip_blocks.html
 - LACNIC: lacnic.net/en/registro/index.html
 - RIPE NCC: www.ripe.net/ripe/docs/smallest-alloc-sizes.html
 - Note that AfriNIC only publishes its current minimum allocation size, not the allocation size for its address blocks
- IANA publishes the address space it has assigned to end-sites and allocated to the RIRs:
 - www.iana.org/assignments/ipv4-address-space
- Several ISPs use this published information to filter prefixes on:
 - What should be routed (from IANA)
 - The minimum allocation size from the RIRs

"Net Police" prefix list issues

- Meant to "punish" Network Operators who pollute the routing table with specifics rather than announcing aggregates
- Impacts legitimate multihoming especially at the Internet's edge
- Impacts regions where domestic backbone is unavailable or costs \$\$\$ compared with international bandwidth
- Hard to maintain requires updating when RIRs start allocating from new address blocks
- Don't do it unless consequences understood and you are prepared to keep the list current
 - Consider using the Team Cymru or other reputable bogon BGP feed:
 - https://www.team-cymru.com/bogon-reference-bgp.html

How to Multihome

Some choices...

Transits

- Transit provider is another autonomous system which is used to provide the local network with access to other networks
 - Might be local or regional only
 - But more usually the whole Internet
- Transit providers need to be chosen wisely:
 - Only one
 - No redundancy
 - Too many
 - More difficult to load balance
 - No economy of scale (costs more per Mbps)
 - Hard to provide service quality

Recommendation: at least two, no more than three

Common Mistakes

Network Operators sign up with too many transit providers

- Lots of small circuits (cost more per Mbps than larger ones)
- Transit rates per Mbps reduce with increasing transit bandwidth purchased
- Hard to implement reliable traffic engineering that doesn't need daily fine tuning depending on customer activities

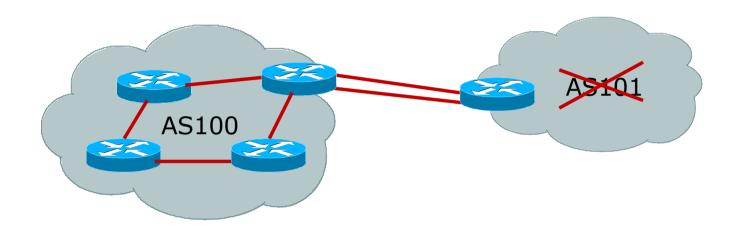
No diversity

- Chosen transit providers all reached over same satellite or same submarine cable
- Chosen transit providers have poor onward transit and peering

Peers

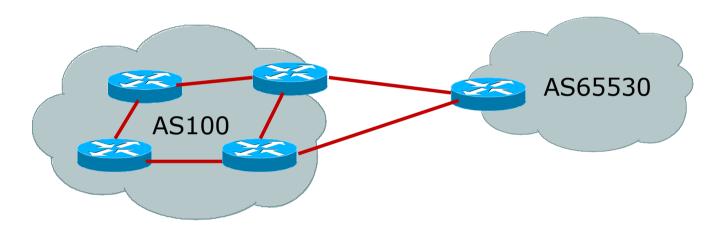
- A peer is another autonomous system with which the local network has agreed to exchange locally sourced routes and traffic
- Private peer
 - Private link between two providers for the purpose of interconnecting
- Public peer
 - Internet Exchange Point, where providers meet and freely decide who they will interconnect with

Recommendation: peer as much as possible!

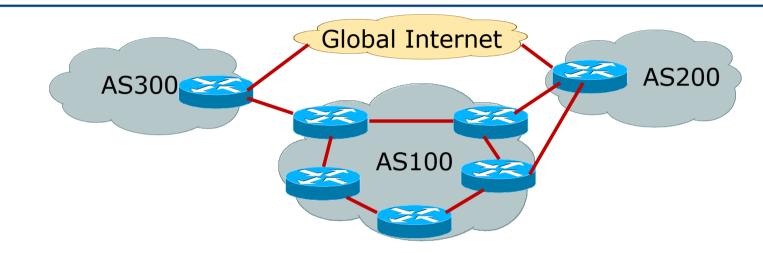

Common Mistakes

- Mistaking a transit provider's "Exchange" business for a nocost public peering point
- Not working hard to get as much peering as possible
 - Physically near a peering point (IXP) but not present at it
 - (Transit sometimes is cheaper than peering!!)
- Ignoring/avoiding competitors because they are competition
 - Even though potentially valuable peering partner to give customers a better experience

Multihoming Scenarios


- Stub network
- Multi-homed stub network
- Multi-homed network
- Multiple Sessions between two ASes

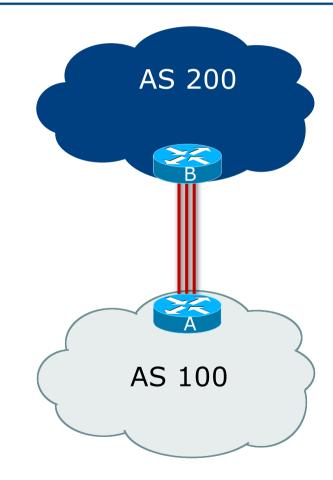
Stub Network


- No need for BGP
- Point static default to upstream AS
- Upstream AS advertises stub network
- Policy confined within upstream AS's policy

Multi-homed Stub Network

- □ Use BGP (not IGP or static) to loadshare
- Use private AS number (see earlier for ranges)
- Upstream AS advertises stub network
- Policy confined within upstream AS's policy

Multi-homed Network

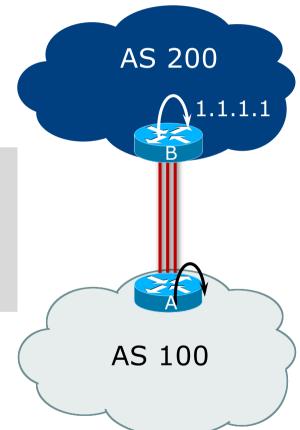

Several situations possible, including:

- 1. Multiple sessions to same AS
- 2. Secondary for backup only
- 3. Load-share between primary and secondary
- 4. Selectively use different ASes

Multiple Sessions between two ASes

Several options

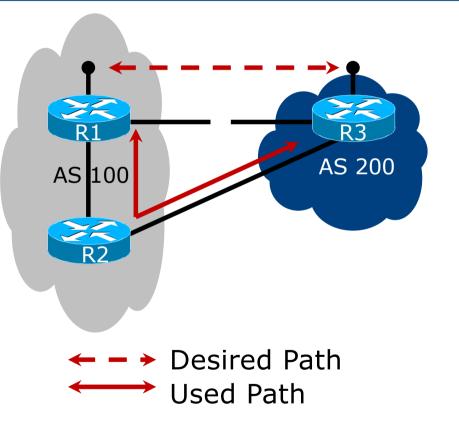
- ebgp multihop
- bgp multipath
- cef loadsharing
- bgp attribute manipulation



Multiple Sessions between two ASes – ebgp multihop

- Use ebgp-multihop
 - Run eBGP between loopback addresses
 - eBGP prefixes learned with loopback address as next hop
- Cisco IOS

```
router bgp 100
neighbor 1.1.1.1 remote-as 200
neighbor 1.1.1.1 ebgp-multihop 2
!
ip route 1.1.1.1 255.255.255.255 serial 1/0
ip route 1.1.1.1 255.255.255.255 serial 1/1
ip route 1.1.1.1 255.255.255.255 serial 1/2
```


 Common error made is to point remote loopback route at IP address rather than specific link

Multiple Sessions between two ASes – ebgp multihop

One serious eBGP-multihop caveat:

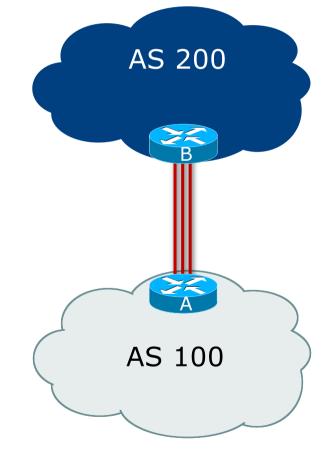
- R1 and R3 are eBGP peers that are loopback peering
- Configured with: neighbor x.x.x. ebgp-multihop 2
- If the R1 to R3 link goes down the session could establish via R2
- Usually happens when routing to remote loopback is dynamic, rather than static pointing at a link

Multiple Sessions between two ASes – ebgp multihop

Try and avoid use of ebgp-multihop unless:

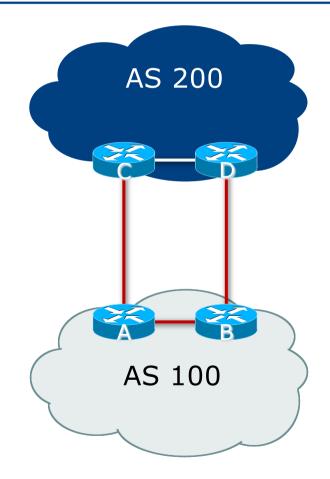
- It's absolutely necessary -or-
- Loadsharing across multiple links

Many Network Operators discourage its use, for example:


We will run eBGP multihop, but do not support it as a standard offering because customers generally have a hard time managing it due to:

- routing loops
- failure to realise that BGP session stability problems are usually due connectivity problems between their CPE and their BGP speaker

Multiple Sessions between two ASes – bgp multi path


- Three BGP sessions required
- Platform limit on number of paths (could be as little as 6)
- Full BGP feed makes this unwieldy
 - 3 copies of Internet Routing Table goes into the FIB

```
router bgp 100
neighbor 100.64.2.1 remote-as 200
neighbor 100.64.2.5 remote-as 200
neighbor 100.64.2.9 remote-as 200
maximum-paths 3
```


Multiple Sessions between two ASes – bgp attributes & filters

- Simplest scheme is to use defaults
- Learn/advertise prefixes for better control
- Planning and some work required to achieve loadsharing
 - Point default towards one AS
 - Learn selected prefixes from second AS
 - Modify the number of prefixes learnt to achieve acceptable load sharing
- No magic solution

Basic Principles of Multihoming

Let's learn to walk before we try running...

The Basic Principles

- Announcing address space attracts traffic
 - (Unless policy in upstream providers interferes)
- Announcing the AS aggregate out a link will result in traffic for that aggregate coming in that link
- Announcing a subprefix of an aggregate out a link means that all traffic for that subprefix will come in that link, even if the aggregate is announced somewhere else
 - The most specific announcement wins!

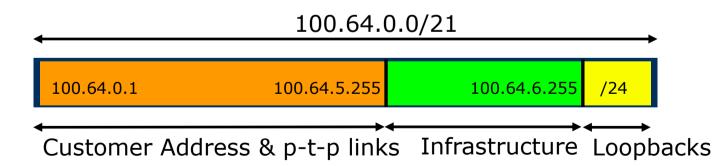
The Basic Principles

To split traffic between two links:

- Announce the aggregate on both links ensures redundancy
- Announce one half of the address space on each link
- (This is the first step, all things being equal)
- Results in:
 - Traffic for first half of address space comes in first link
 - Traffic for second half of address space comes in second link
 - If either link fails, the fact that the aggregate is announced ensures there is a backup path

The Basic Principles

The keys to successful multihoming configuration:


- Keeping traffic engineering prefix announcements independent of customer iBGP
- Understanding how to announce aggregates
- Understanding the purpose of announcing subprefixes of aggregates
- Understanding how to manipulate BGP attributes
- Too many upstreams/external paths makes multihoming harder (2 or 3 is enough!)

IP Addressing & Multihoming

How Good IP Address Plans assist with Multihoming

IP Addressing & Multihoming

- IP Address planning is an important part of Multihoming
- Previously have discussed separating:
 - Customer address space
 - Customer p-t-p link address space
 - Infrastructure p-t-p link address space
 - Loopback address space

IP Addressing & Multihoming

- Router loopbacks and backbone point-to-point links make up a small part of total address space
 - And they don't attract traffic, unlike customer address space
- Links from the Network Operator's Aggregation edge to customer router needs one /30
 - Small requirements compared with total address space
 - Some operators use IP unnumbered
- Planning customer assignments is a very important part of multihoming
 - Traffic engineering involves subdividing aggregate into pieces until load balancing works

Unplanned IP addressing

Network Operator fills up customer IP addressing from one end of the range:

> 100.64.0.0/21 1 2 3 4 5 Customer Addresses ISP

- Customers generate traffic
 - Dividing the range into two pieces will result in one /22 with all the customers, and one /22 with just the Network Operator infrastructure the addresses
 - No loadbalancing as all traffic will come in the first /22
 - Means further subdivision of the first /22 = harder work

Planned IP addressing

If Network Operator fills up customer addressing from both ends of the range:

100.64.0.0/21

 1 3 5 7 9
 2 4 6 810

 Customer Addresses
 Customer Addresses

- Scheme then is:
 - First customer from first /22, second customer from second /22, third from first /22, etc
- This works also for residential versus commercial customers:
 - Residential from first /22
 - Commercial from second /22

Planned IP Addressing

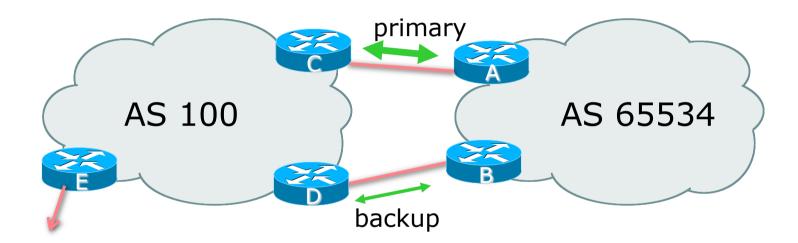
- This works fine for multihoming between two upstream links (same or different providers)
- Can also subdivide address space to suit more than two upstreams
 - Follow a similar scheme for populating each portion of the address space
- Don't forget to always announce an aggregate out of each link

Basic Multihoming

Let's try some simple worked examples...

Basic Multihoming

- No frills multihoming
- Will look at two cases:
 - Multihoming with the same AS
 - Multihoming to different ASes
- Will keep the examples easy
 - Understanding easy concepts will make the more complex scenarios easier to comprehend
 - All assume that the site multihoming has a /19 address block


Basic Multihoming

- This type is most commonplace at the edge of the Internet
 - Networks here are usually concerned with inbound traffic flows
 - Outbound traffic flows being "nearest exit" is usually sufficient
- Can apply to the leaf Network Operator as well as Enterprise networks

Two links to the same AS

One link primary, the other link backup only

- Applies when end-site has bought a large primary WAN link to their upstream and a small secondary WAN link as the backup
 - For example, primary path might be 20Mbps, backup might be 5Mbps

AS100 removes private AS and any customer subprefixes from Internet announcement

- Announce /19 aggregate on each link
 - primary link:
 - Outbound announce /19 unaltered
 - Inbound receive default route
 - backup link:
 - Outbound announce /19 with increased metric
 - Inbound received default, and reduce local preference

When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Router A Configuration

```
router bgp 65534
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
neighbor 100.66.10.2 remote-as 100
neighbor 100.66.10.2 description RouterC
neighbor 100.66.10.2 prefix-list aggregate out
neighbor 100.66.10.2 prefix-list default in
neighbor 100.66.10.2 activate
!
ip prefix-list aggregate permit 100.64.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 100.64.0.0 255.255.224.0 null0
```

Router B Configuration

```
router bgp 65534
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
neighbor 100.66.10.6 remote-as 100
neighbor 100.66.10.6 description RouterD
neighbor 100.66.10.6 prefix-list aggregate out
neighbor 100.66.10.6 route-map med10-out out
neighbor 100.66.10.6 prefix-list default in
neighbor 100.66.10.6 route-map lp-low-in in
neighbor 100.66.10.6 activate
!
```

..next slide

```
ip prefix-list aggregate permit 100.64.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 100.64.0.0 255.255.224.0 null0
!
route-map med10-out permit 10
set metric 10
!
route-map lp-low-in permit 10
set local-preference 90
```

Router C Configuration (main link)

```
router bgp 100
address-family ipv4
neighbor 100.66.10.1 remote-as 65534
neighbor 100.66.10.1 default-originate
neighbor 100.66.10.1 prefix-list Customer in
neighbor 100.66.10.1 prefix-list default out
neighbor 100.66.10.1 activate
!
ip prefix-list Customer permit 100.64.0.0/19
ip prefix-list default permit 0.0.0.0/0
```

Router D Configuration (backup link)

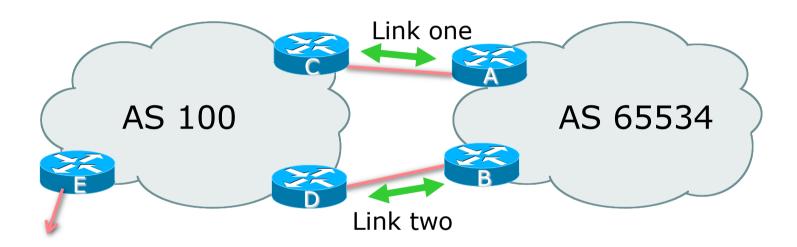
```
router bgp 100
address-family ipv4
neighbor 100.66.10.5 remote-as 65534
neighbor 100.66.10.5 default-originate
neighbor 100.66.10.5 prefix-list Customer in
neighbor 100.66.10.5 prefix-list default out
neighbor 100.66.10.5 activate
!
ip prefix-list Customer permit 100.64.0.0/19
ip prefix-list default permit 0.0.0.0/0
```

Router E Configuration

```
router bgp 100
address-family ipv4
neighbor 100.66.10.17 remote-as 110
neighbor 100.66.10.17 remove-private-AS
neighbor 100.66.10.17 prefix-list Customer out
neighbor 100.66.10.17 activate
!
ip prefix-list Customer permit 100.64.0.0/19
```

Router E removes the private AS and customer's subprefixes from external announcements

Private AS still visible inside AS100


Two links to the same AS

With Loadsharing

Loadsharing to the same AS

- More common case
- End sites tend not to buy circuits and leave them idle, only used for backup as in previous example
- This example assumes equal capacity circuits
 - Unequal capacity circuits requires more refinement see later

Loadsharing to the same AS

Border router E in AS100 removes private AS and any customer subprefixes from Internet announcement

- Announce /19 aggregate on each link
- Split /19 and announce as two /20s, one on each link
 - Basic inbound loadsharing
 - Assumes equal circuit capacity and even spread of traffic across address block
- Vary the split until "perfect" loadsharing achieved
- Accept the default from upstream
 - Basic outbound loadsharing by nearest exit
 - Okay in first approximation as most Network Operator and end-site traffic is inbound

Router A Configuration

```
router bgp 65534
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
network 100.64.0.0 mask 255.255.240.0
neighbor 100.66.10.2 remote-as 100
neighbor 100.66.10.2 prefix-list as100-a out
neighbor 100.66.10.2 prefix-list default in
neighbor 100.66.10.2 activate
!
ip prefix-list default permit 0.0.0.0/0
ip prefix-list as100-a permit 100.64.0.0/20
ip prefix-list as100-a permit 100.64.0.0/19
!
ip route 100.64.0.0 255.255.240.0 null0
ip route 100.64.0.0 255.255.224.0 null0
```

68

Router B Configuration

```
router bgp 65534
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
network 100.64.16.0 mask 255.255.240.0
neighbor 100.66.10.6 remote-as 100
neighbor 100.66.10.6 prefix-list as100-b out
neighbor 100.66.10.6 prefix-list default in
neighbor 100.66.10.6 activate
!
ip prefix-list default permit 0.0.0.0/0
ip prefix-list as100-b permit 100.64.16.0/20
ip prefix-list as100-b permit 100.64.0.0/19
!
ip route 100.64.16.0 255.255.240.0 null0
ip route 100.64.0.0 255.255.224.0 null0
```

Router C Configuration

```
router bgp 100
address-family ipv4
neighbor 100.66.10.1 remote-as 65534
neighbor 100.66.10.1 default-originate
neighbor 100.66.10.1 prefix-list Customer in
neighbor 100.66.10.1 prefix-list default out
neighbor 100.66.10.1 activate
!
ip prefix-list Customer permit 100.64.0.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

Router C only allows in /19 and /20 prefixes from customer block
 Router D configuration is identical

Router E Configuration

```
router bgp 100
address-family ipv4
neighbor 100.66.10.17 remote-as 110
neighbor 100.66.10.17 remove-private-AS
neighbor 100.66.10.17 prefix-list Customer out
neighbor 100.66.10.17 activate
!
ip prefix-list Customer permit 100.64.0.0/19
```

Private AS still visible inside AS100

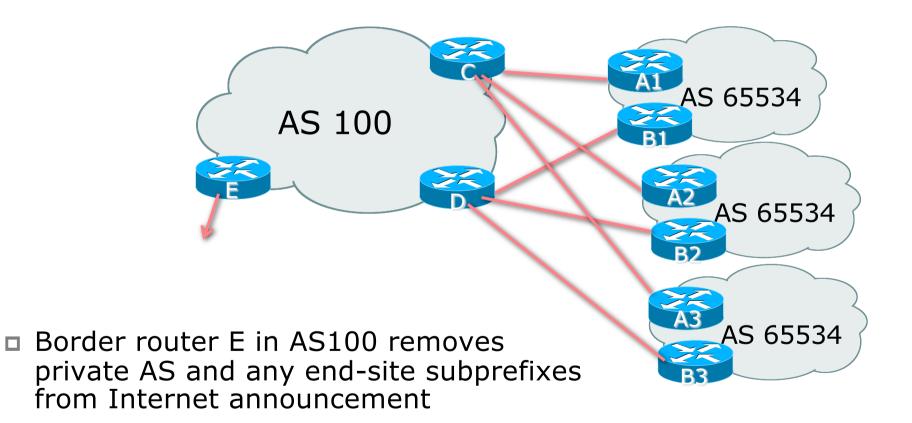
Default route for outbound traffic?

- Originate the default route in the IGP on the Border routers
 Rely on IGP metrics for nearest exit
 - IGP originates default route as long as BGP puts default route in RIB
- e.g. on router A using OSPF:

```
router ospf 65534
default-information originate
```

e.g. on router A using IS-IS:

```
router isis as65534
default-information originate route-map DEF-ORIG
```


Loadsharing to the same AS (with redundancy)

- Loadsharing configuration is only on customer router
- Upstream provider has to
 - Remove customer subprefixes from external announcements
 - Remove private AS from external announcements
- Could also use BGP communities
 - See "BGP Communities" presentation

Two links to the same AS

Multiple Dualhomed End-sites (RFC2270)

- Unusual for any Network Operator just to have one dualhomed end-site
 - Valid/valuable service offering for an operator with multiple PoPs
 - Better for the operator than having end-site multihome with another provider!
- Look at scaling the configuration
 - $\blacksquare \Rightarrow$ Simplifying the configuration
 - Using templates, peer-groups, etc
 - Every customer has the same configuration (basically)

End-site announcements as per previous example

- Use the same private AS for each end-site
 - Documented in RFC2270
 - Address space is not overlapping
 - Each end-site hears default only

Router An and Bn configuration same as Router A and B previously

Router A1 Configuration

```
router bgp 65534
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
network 100.64.0.0 mask 255.255.240.0
neighbor 100.66.10.2 remote-as 100
neighbor 100.66.10.2 prefix-list as100-a out
neighbor 100.66.10.2 prefix-list default in
neighbor 100.66.10.2 activate
!
ip prefix-list default permit 0.0.0.0/0
ip prefix-list as100-a permit 100.64.0.0/20
ip prefix-list as100-a permit 100.64.0.0/19
!
ip route 100.64.0.0 255.255.240.0 null0
ip route 100.64.0.0 255.255.224.0 null0
```

78

Router B1 Configuration

```
router bgp 65534
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
network 100.64.16.0 mask 255.255.240.0
neighbor 100.66.10.6 remote-as 100
neighbor 100.66.10.6 prefix-list as100-b out
neighbor 100.66.10.6 prefix-list default in
neighbor 100.66.10.6 activate
!
ip prefix-list default permit 0.0.0.0/0
ip prefix-list as100-b permit 100.64.16.0/20
ip prefix-list as100-b permit 100.64.0.0/19
!
ip route 100.64.0.0 255.255.224.0 null0
ip route 100.64.16.0 255.255.240.0 null0
```

79

Router C Configuration

router bgp 100 address-family ipv4 neighbor bgp-customers peer-group neighbor bgp-customers remote-as 65534 neighbor bgp-customers default-originate neighbor bgp-customers prefix-list default out neighbor 100.66.10.1 peer-group bgp-customers neighbor 100.66.10.1 description Customer One neighbor 100.66.10.1 prefix-list Customer1 in neighbor 100.66.10.1 activate neighbor 100.66.10.9 peer-group bgp-customers neighbor 100.66.10.9 description Customer Two neighbor 100.66.10.9 prefix-list Customer2 in neighbor 100.66.10.9 activate

```
neighbor 100.66.10.17 peer-group bgp-customers
neighbor 100.66.10.17 description Customer Three
neighbor 100.66.10.17 prefix-list Customer3 in
neighbor 100.66.10.17 activate
!
ip prefix-list Customer1 permit 100.64.0.0/19 le 20
ip prefix-list Customer2 permit 100.67.64.0/19 le 20
ip prefix-list Customer3 permit 100.65.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

Router C only allows in /19 and /20 prefixes from end-site block

Router D Configuration

router bgp 100 address-family ipv4 neighbor bgp-customers peer-group neighbor bgp-customers remote-as 65534 neighbor bgp-customers default-originate neighbor bgp-customers prefix-list default out neighbor 100.66.10.5 peer-group bgp-customers neighbor 100.66.10.5 description Customer One neighbor 100.66.10.5 prefix-list Customer1 in neighbor 100.66.10.5 activate neighbor 100.66.10.13 peer-group bgp-customers neighbor 100.66.10.13 description Customer Two neighbor 100.66.10.13 prefix-list Customer2 in neighbor 100.66.10.13 activate

82

```
neighbor 100.66.10.21 peer-group bgp-customers
neighbor 100.66.10.21 description Customer Three
neighbor 100.66.10.21 prefix-list Customer3 in
neighbor 100.66.10.21 activate
!
ip prefix-list Customer1 permit 100.64.0.0/19 le 20
ip prefix-list Customer2 permit 100.67.64.0/19 le 20
ip prefix-list Customer3 permit 100.65.192.0/19 le 20
ip prefix-list default permit 0.0.0.0/0
```

Router D only allows in /19 and /20 prefixes from end-site block

- Router E Configuration
 - Assumes end-site address space is not part of upstream's address block

```
router bgp 100
address-family ipv4
neighbor 100.66.10.17 remote-as 110
neighbor 100.66.10.17 remove-private-AS
neighbor 100.66.10.17 prefix-list Customers out
neighbor 100.66.10.17 activate
!
ip prefix-list Customers permit 100.64.0.0/19
ip prefix-list Customers permit 100.67.64.0/19
ip prefix-list Customers permit 100.65.192.0/19
```

Private AS still visible inside AS100

If end-sites' prefixes come from Network Operator's address block

- Do NOT announce them to the Internet
- Announce Network Operator aggregate only
- Router E configuration:

```
router bgp 100
neighbor 100.66.10.17 remote-as 110
neighbor 100.66.10.17 prefix-list aggregate out
!
ip prefix-list aggregate permit 100.64.0.0/12
```

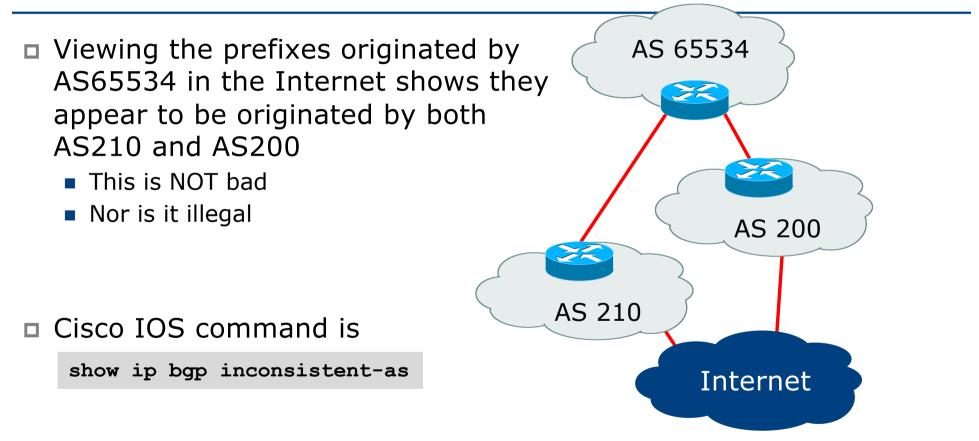
Multihoming Summary

- Use private AS for multihoming to the same upstream
 Leak subprefixes to upstream only to aid loadsharing
 Upstream router E configuration is identical across all
- situations

Basic Multihoming

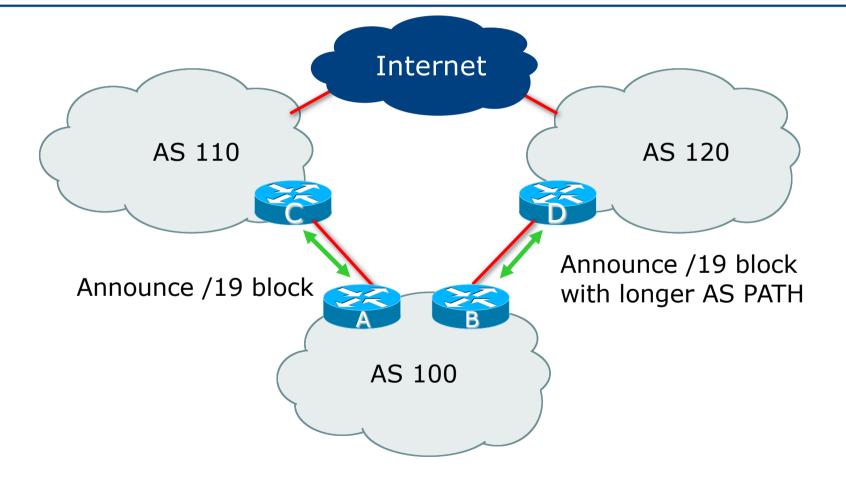
Multihoming to Different ASes

Two links to different ASes


Use a Public AS number

- Or use private AS number if agreed with the other Network Operator
- But some people don't like the "inconsistent-AS" which results from use of a private AS number

Address space comes from


- Both upstreams or
- Regional Internet Registry
- NB. Very hard to multihome with address space from both upstreams due to typical operational policy in force to day
- Configuration concepts very similar to those used for two links to the same AS

Inconsistent-AS?

Two links to different ASes

One link primary, the other link backup only

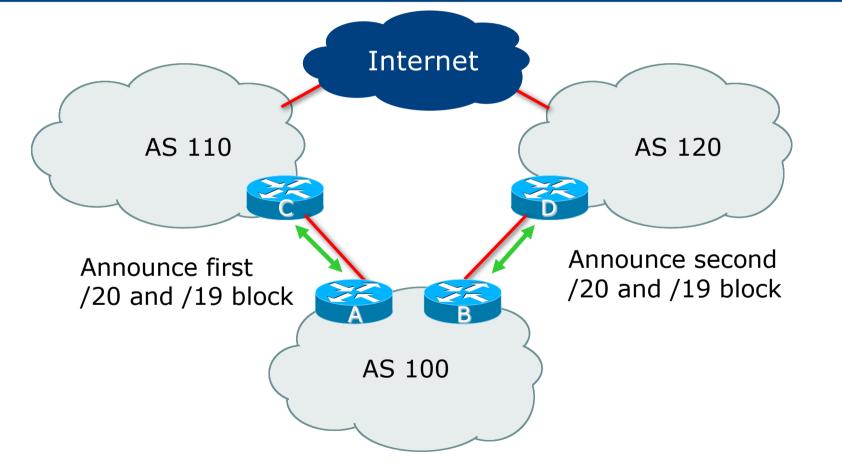
□ Announce /19 aggregate on each link

- Primary link makes standard announcement
- Backup link lengthens the AS PATH by using AS PATH prepend
- When one link fails, the announcement of the /19 aggregate via the other link ensures continued connectivity

Router A Configuration

```
router bgp 100
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
neighbor 100.66.10.1 remote-as 110
neighbor 100.66.10.1 prefix-list aggregate out
neighbor 100.66.10.1 prefix-list default in
neighbor 100.66.10.1 activate
!
ip prefix-list aggregate permit 100.64.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
ip route 100.64.0.0 255.255.224.0 null0
```

Router B Configuration


```
router bgp 100
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
neighbor 100.67.5.1 remote-as 120
neighbor 100.67.5.1 prefix-list aggregate out
neighbor 100.67.5.1 route-map as120-prepend out
neighbor 100.67.5.1 prefix-list default in
neighbor 100.67.5.1 route-map lp-low in
neighbor 100.67.5.1 activate
!
...next slide...
```

```
ip route 100.64.0.0 255.255.224.0 null0
!
ip prefix-list aggregate permit 100.64.0.0/19
ip prefix-list default permit 0.0.0.0/0
!
route-map as120-prepend permit 10
set as-path prepend 100 100 100
!
route-map lp-low permit 10
set local-preference 80
```

- Not a common situation as most sites tend to prefer using whatever capacity they have
 - (Useful when two competing ISPs agree to provide mutual backup to each other)
- But it shows the basic concepts of using local-prefs and AS-path prepends for engineering traffic in the chosen direction

Two links to different ASes

With Loadsharing

Announce /19 aggregate on each link

■ Split /19 and announce as two /20s, one on each link

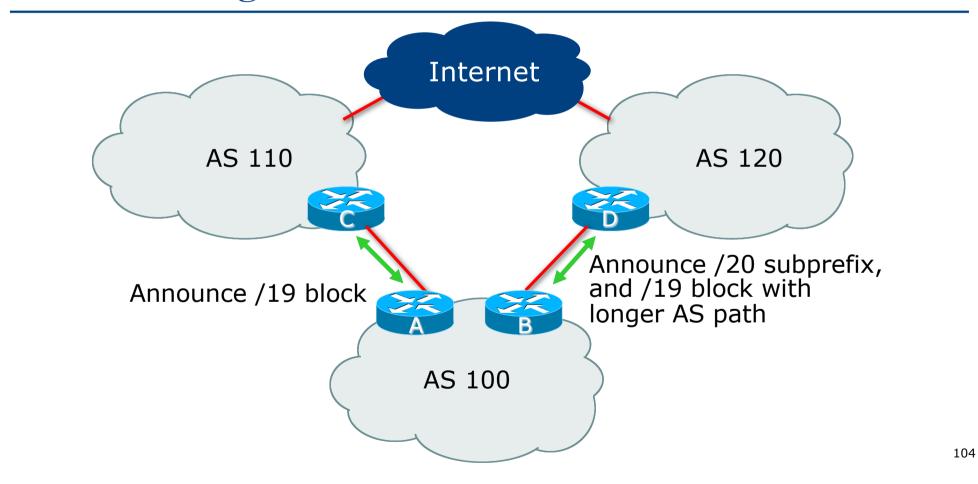
- Basic inbound loadsharing
- When one link fails, the announcement of the /19 aggregate via the other ISP ensures continued connectivity

Router A Configuration

```
router bgp 100
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
network 100.64.0.0 mask 255.255.240.0
neighbor 100.66.10.1 remote-as 110
neighbor 100.66.10.1 prefix-list as110-out out
neighbor 100.66.10.1 prefix-list default in
neighbor 100.66.10.1 activate
!
ip route 100.64.0.0 255.255.224.0 null0
ip route 100.64.0.0 255.255.240.0 null0
!
ip prefix-list default permit 0.0.0.0/0
ip prefix-list as110-out permit 100.64.0.0/20
ip prefix-list as110-out permit 100.64.0.0/19
```

100

Router B Configuration


```
router bgp 100
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
network 100.64.16.0 mask 255.255.240.0
neighbor 100.67.5.1 remote-as 120
neighbor 100.67.5.1 prefix-list as120-out out
neighbor 100.67.5.1 prefix-list default in
neighbor 100.67.5.1 activate
!
ip route 100.64.0.0 255.255.224.0 null0
ip route 100.64.16.0 255.255.240.0 null0
!
ip prefix-list default permit 0.0.0.0/0
ip prefix-list as120-out permit 100.64.0.0/19
ip prefix-list as120-out permit 100.64.16.0/20
```

101

- Loadsharing in this case is very basic
- But shows the first steps in designing a load sharing solution
 - Start with a simple concept
 - And build on it...!

Two links to different ASes

More Controlled Loadsharing

- Announce /19 aggregate on each link
 - On first link, announce /19 as normal
 - On second link, announce /19 with longer AS PATH, and announce one /20 subprefix
 - Controls loadsharing between upstreams and the Internet
- Vary the subprefix size and AS PATH length until "perfect" loadsharing achieved
- Still require redundancy!

Router A Configuration

```
router bgp 100
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
neighbor 100.66.10.1 remote-as 110
neighbor 100.66.10.1 prefix-list default in
neighbor 100.66.10.1 prefix-list as110-out out
neighbor 100.66.10.1 activate
!
ip route 100.64.0.0 255.255.224.0 null0
!
ip prefix-list as110-out permit 100.64.0.0/19
!
ip prefix-list default permit 0.0.0.0/0
```

106

Router B Configuration

```
router bgp 100
address-family ipv4
network 100.64.0.0 mask 255.255.224.0
network 100.64.16.0 mask 255.255.240.0
neighbor 100.67.5.1 remote-as 120
neighbor 100.67.5.1 prefix-list default in
neighbor 100.67.5.1 prefix-list as120-out out
neighbor 100.67.5.1 route-map agg-prepend out
neighbor 100.67.5.1 activate
!
ip route 100.64.0.0 255.255.224.0 null0
ip route 100.64.16.0 255.255.240.0 null0
!
...next slide...
```

```
route-map agg-prepend permit 10
match ip address prefix-list aggregate
set as-path prepend 100 100
!
route-map agg-prepend permit 20
!
ip prefix-list default permit 0.0.0.0/0
!
ip prefix-list as120-out permit 100.64.0.0/19
ip prefix-list as120-out permit 100.64.16.0/20
!
ip prefix-list aggregate permit 100.64.0.0/19
```

- This example is more commonplace
- Shows how Network Operators and end-sites subdivide address space frugally, as well as use the AS-PATH prepend concept to optimise the load sharing between different ISPs
- Notice that the /19 aggregate block is ALWAYS announced

Summary

Summary

- Previous examples dealt with simple case
- Load balancing inbound traffic flow
 - Achieved by modifying outbound routing announcements
 - Aggregate is always announced
- We have not looked at outbound traffic flow
 - For now this is left as "nearest exit"

Simple Multihoming

ISP Workshops