Where are we now? IPv6 deployment update

SANOG 32 02-10 August 2018 | Dhaka, BD

Philip Smith philip@apnic.net

Agenda

- IPv6 End-User Readiness
- IPv6 Performance
- Industry Trends
- Observations

IPv6 stats from: <u>https://stats.labs.apnic.net/ipv6</u> Retrieved: 26 Jul 2018

Global IPv6 End-User Readiness

Global IPv6 End-User Readiness

50 >

The IPv6 economy league table

СС	Economy	IPv6 capable (%)	IPv6 Preferred (%)
IN	India	60.25	58.21
BE	Belgium	58.65	56.46
US	United States	44.66	42.58
GR	Greece	36.22	35.59
DE	Germany	35.07	33.50
UY	Uruguay	31.07	30.21
СН	Switzerland	28.10	26.42
MY	Malaysia	27.96	26.85
BR	Brazil	27.94	26.61
IE	Ireland	27.31	26.61

What about South Asia?

СС	Economy	IPv6 capable (%)	IPv6 Preferred (%)
IN	India	60.25	58.21
LK	Sri Lanka	8.03	7.71
BT	Bhutan	6.40	6.08
AF	Afghanistan	0.03	0.02
PK	Pakistan	0.02	0.02
NP	Nepal	0.01	0.01
BD	Bangladesh	0.00	0.00
MV	Maldives	0.00	0.00

Bhutan IPv6 End-User Readiness

Bhutan IPv6 leaderboard

ASN	Organization	IPv6 capable (%)	IPv6 Preferred (%)
17660	DrukNet	8.76	8.32
134715	DrukREN	3.74	3.50
38740	TashiCell Transit	0.59	0.57
136039	NANO	0.56	0.56

AS 17660: DrukNet

Sri Lanka IPv6 End-User Readiness

Sri Lanka IPv6 leaderboard

ASN	Organization	IPv6 capable (%)	IPv6 Preferred (%)
38229	LEARN	24.61	15.82
18001	Dialog	16.80	16.38
9329	Sri Lanka Telecom	1.85	1.80
45356	Mobitel	0.03	0.00
45224	Lanka Bell	0.03	0.00
132045	Bharti Airtel	0.01	0.00
132447	Hutchison	0.01	0.00

AS 18001: Dialog

India IPv6 End-User Readiness

India IPv6 leaderboard

ASN	Organization	IPv6 capable (%)	IPv6 Preferred (%)
55836	Reliance Jio	92.28	90.52
38266	Vodafone	47.12	45.91
45271	Idea Cellular	45.04	33.94
55441	TTSL	21.39	20.07
45609	Bharti Airtel	10.37	10.07
24309	Atria Convergence Technologies	2.18	2.10
18209	Atria Convergence Technologies	2.11	1.98

AS 55836: Reliance Jio

Bangladesh

- 29,666,000 Internet users
- 18.2% Internet penetration
- 644 ASNs

AP

0.00% IPv6 readiness

IPv4		
Addresses	1,561,344	
Per Capita	0.01	
ASNs in BGP	514	
% Visible	89%	

IPv	6
Addresses	2.84 x10 ²⁵
Per Capita	1.74 x10 ¹⁷
ASNs in BGP	57
% Visible	4%
	r J

Bangladesh IPv6 End-User Readiness

Is IPv6 as robust as IPv4?

- Do all TCP connection attempt succeed?
 - Connection failure = No ACK for acknowledged SYN
- IPv4 connection failure sits at 0.2%
- IPv6 connection failure sits at 1.8%

[source : http://www.potaroo.net/presentations/2016-02-10-ad-measurement.pdf]

- Is IPv6 as fast as IPv4? (IPv6 unicast)
 - Comparison of RTT (e2e)
 - Time since SYN till ACK (factors out any congestion issues)
 - IPv6 is faster about half of the time
 - 36-90ms faster
 - IPv6 as fast as IPv4

[source : http://www.potaroo.net/presentations/2016-02-10-ad-measurement.pdf]

- Is IPv6 as fast as IPv4? (IPv6 unicast)
 - Comparison of RTT (e2e)
 - Time since SYN till ACK (factors out any congestion issues)
 - IPv6 is faster about half of the time
 - 36-90ms faster
 - IPv6 as fast as IPv4
- Testing HTTP Traffic
 - TechArk Network Operator Measurement Activity (NOMA) conducted preliminary tests of IPv6 performance for HTTP traffic using RIPE Atlases.
 - Found performance of IPv6 is better when measuring to a "near" target

[source: https://blog.apnic.net/2017/09/29/network-operator-perspective-ipv6-performance/]

- Is IPv6 as fast as IPv4? (IPv6 unicast)
 - Comparison of RTT (e2e)
 - Time since SYN till ACK (factors out any congestion issues)
 - IPv6 is faster about half of the time
 - 36-90ms faster
 - IPv6 as fast as IPv4
- IPv6 at LinkedIn
 - For some select networks in Europe, LinkedIn is seeing up to 40% performance improvements over IPv6, and in the US, up to 10%.
 - TCP timeout on IPv4 over mobile carrier networks is as high as 4.6% and IPv6 timeouts are on a much lower side at 1.6%.

[source : https://blog.apnic.net/2016/05/13/linkedin-ipv6-measurements/]

IPv6 in Action: Content

Percentage of Alexa Top 1000 websites currently reachable over IPv6

[source : http://www.worldipv6launch.org/measurements/]

Industry Trend: Devices

Desktop vs Mobile vs Tablet Market Share Worldwide June 2016 - June 2018

[source : http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet]

Industry Trend: Devices

Desktop vs Mobile vs Tablet Market Share Worldwide June 2016 - June 2018

[source : http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet]

Industry trend: Mobile

- The mobile market is the market "driver" for Internet technology:
 - The PC and laptop market is in terminal decline
 - Mobiles represent the highest revenue sector, and show the highest growth numbers
 - The mobile Market was born and raised on NATs
 - The IPv4 model for cellular mobile service is still heavily based on CGNs

The true driver for IPv6 adoption in the Internet is in the mobile sector

IPv6 in Action: Mobile Devices

OS	Version	Available by default	DHCPv6
Android	4.4	Yes	No
iOS	4.1	Yes	Yes
Windows Phone	8.1	Yes	Yes

- Android and Windows Phone support 464XLAT
- KaiOS, as installed on JioPhone, supports dual-stack IPv6
- Apple iOS IPv6-only network support since version 9. Reports of Carrier Update for dual-stack since at least iOS 11.3.
- Since 2016 all Apple AppStore apps must include IPv6 support

[source : https://getipv6.info/display/IPv6/3GPP+Mobile+Networks]

APNIC

IPv6 in Action: Mobile Networks

Carrier	Economy	Note
Verizon Wireless	USA	Deployed dual stack transition technology in 2011
T-Mobile	USA	Deployed IPv6 transition technology (464XLAT) in 2012
SK Telecom	Korea	Deployed IPv6 transition technology (464XLAT) in 2014
Telstra	Australia	Deployed IPv6 transition technology (464XLAT) in 2016
Reliance Jio	India	Deployed dual stack transition technology in 2016
AIS	Thailand	Deployed dual stack transition technology in 2016 (Fibre) and 2017 (3G/4G)
Bhutan Telecom	Bhutan	Deployed dual stack transition technology in 2018 (3G/4G)

Motivation for Early Market Drivers

- Capability to support growth, IoT, Smart Cities, future services
- Simplify network design
- Reduce load on CGN
- Lower CAPEX
- Commitment to Internet Tech Evolution
- Government Encouragement

Observations

- IPv6 end-user readiness is increasing across diverse economy profiles.
- Once fully enabled, IPv6 usage increases quickly within networks.
- Common trend sees three stages of economy readiness.
- Mobile operators largely responsible for driving large scale uptake.
- Positive signs for future readiness growth, especially as vendor support grows.

IPv6@APNIC

đĀXEČ!

Thank You!

