Introduction to IS-IS

ISP Workshops

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Last updated 3rd December 2018

Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

Philip Smith

- Intermediate System to Intermediate System
- ISO 10589 specifies OSI IS-IS routing protocol for ConnectionLess-mode Network Services (CLNS) traffic
 - A Link State protocol with a 2 level hierarchical architecture
 - Type/Length/Value (TLV) options to enhance the protocol
- RFC 1195 added IP support
 - Integrated IS-IS
 - I/IS-IS runs on top of the Data Link Layer

Known as a Link State Routing Protocol

- The other link state routing protocol is OSPF
- Each node in the network computes the map of connectivity through the network
- Both use Edsger Dijkstra's algorithm for producing shortest path tree through a graph
 - Dijkstra, E. W. (1959). "A note on two problems in connexion with graphs". Numerische Mathematik 1: 269–271
- The other type of Routing Protocol is Distance Vector
 - Like Cisco's EIGRP or RIP
 - Each node shares its view of the routing table with other nodes

- Routers with IS-IS enabled on them look for neighbouring routers also running IS-IS
 - Hello Protocol Data Units (PDUs) are exchanged
 - The "Hello" packet includes the list of known neighbours, and details such as "hello interval" and "router dead interval"
 - Hello interval how often the router will send Hellos
 - Router dead interval how long to wait before deciding router has disappeared
 - The values of "hello interval" and "router dead interval" do not need to match on both neighbours (unlike for OSPF)
 - When a neighbouring router responds with matching details, a neighbour relationship is formed

IS-IS Neighbour Relationships

- A relationship is formed between neighbouring routers for the purpose of exchanging routing information
 - This is called an ADJACENCY

IS-IS Adjacencies

- Once an adjacency is formed, neighbours share their link state information
 - Information goes in a Link State PDU (LSP)
 - LSPs are flooded to all neighbours
- New information received from neighbours is used to compute a new view of the network
- On a link failure
 - New LSPs are flooded
 - The routers recompute the routing table

IS-IS across a network

- All routers across the network form neighbour relationships with their directly attached neighbours
- Each router computes the routing table
- Once each router has the same view of the network, the network has converged
- The IGP design for a network is crucially important to ensure scalability and rapid convergence
- Generally: the fewer the prefixes, the faster the convergence

IS-IS Levels

IS-IS has a 2 layer hierarchy

- Level-2 (the backbone)
- Level-1 (the edge)
- A router can be
 - Level-1 (L1) router
 - Level-2 (L2) router
 - Level-1-2 (L1L2) router
- Most small to medium networks (up to ~500 routers) are happily using just Level-2

IS-IS is multiprotocol

- Integrated IS-IS carries CLNS and IPv4 address families
- RFC5308 adds IPv6 address family support
- RFC5120 adds multi-topology support
- IS-IS extended to carry IPv6 prefixes
 - Either sharing topology with IPv4
 When IPv4 and IPv6 topologies are identical
 - Or using "multi-topology", independent of IPv4
 - Allows incremental rollout of IPv6

Links in IS-IS

• Two types of links in IS-IS:

- Point-to-point link
 - Only one other router on the link, forming a point-to-point adjacency
- Multi-access network (e.g. ethernet)
 - Potential for many other routers on the network, with several other adjacencies

IS-IS in multi-access networks has optimisations to aid scaling

- One router is elected to originate the LSPs for the whole multi-access network
- Called "Designated Intermediate System"
- Other routers on the multi-access network form adjacencies with the DIS

Designated IS

- There is ONE designated router per multi-access network
 - Generates network link advertisements
 - Assists in database synchronization
 - Scales IS-IS for multi-access (ethernet) networks

Selecting the Designated Router

Configured priority (per interface)

Configure high priority on the router to be the DIS

```
interface gigabitethernet0/1
isis priority 127 level-2
```

- Else priority determined by highest MAC address
 - Best practice is to set two routers to be highest priority then in case of failure of the DIS there is deterministic fall back to the other

Adjacencies: Examples

□ To find CLNS adjacency state, use:

show clns neighbor

System Id	Interface	SNPA	State	Holdtime	Туре	Protocol
Router2	Fa0/0	ca01.9798.0008	Up	23	L2	M-ISIS
Router3	Sel/O	*HDLC*	Up	26	L2	M-ISIS

□ To find IS-IS adjacency state, use:

show isis neighbor

System Id	Туре	Interface	IP Address	State	Holdtime	Circuit Id
Router2	L2	Fa0/0	10.10.15.2	UP	24	Router2.01
Router3	L2	Se1/0	10.10.15.6	UP	27	00

IS-IS NSAP Address

- IP based routing protocols have a router-id to uniquely identify a router
- □ In IS-IS, the IS (router) is identified by a Network Entity Title (NET)
 - Can be from 64 to 160 bits long
 - The NET is the address of a Network Service Access Point (NSAP), identifying an instance of IS-IS running on the IS
- ISPs typically choose NSAP addresses thus:
 - First 8 bits pick a number (usually 49)
 - Next 16 bits area
 - Next 48 bits router loopback address
 - Final 8 bits zero
- **•** Example:
 - NSAP: 49.0001.1921.6800.1001.00
 - Router: 192.168.1.1 (loopback) in Area 1

IS-IS NSAP Address (Alternative)

A simpler alternative, assuming a well documented ISP design

- First 8 bits pick a number (usually 49)
- Next 16 bits area
- Next 16 bits PoP identifier
- Next 16 bits Router identifier
- Final 8 bits zero
- **D** Example:
 - NSAP: 49.0001.0009.0003.00
 - Router: #3 in PoP 9 in Area 1

IS-IS on Cisco IOS

Starting IS-IS in Cisco's IOS

router isis as42

Where "as42" is the process ID

IS-IS process ID is local to the router

- Allows the possibility of running multiple instances of IS-IS on one router
- The process ID is not passed between routers
- Some ISPs configure the process ID to be the same as their BGP Autonomous System Number

IS-IS in Cisco IOS

- Cisco IOS default is for all routers to be L1L2
 - This is suboptimal all routers need to be L2 only
- Once IS-IS is started, other required configuration under the IS-IS process includes:
 - log-adjacency-changes
 - Capture adjacency changes in the system log
 metric-style wide
 - Set metric-style to wide is-type level-2-only
 - Set IS type to level 2 only (router-wide configuration)
 - net 49.0001.<loopback>.00
 - Set NET address

Adding interfaces to IS-IS

To activate IS-IS on an interface:

```
interface Gigabit 4/0
ip router isis as42
```

- Puts interface subnet address into the LSDB
- Enables CLNS on that interface

To disable IS-IS on an interface:

```
router isis as42
passive-interface Gigabit 2/0
```

- Disables CLNS on that interface
- Puts the interface subnet address into the LSDB
- No IS-IS configuration for an interface
 - No CLNS run on interface, no interface subnet in the LSDB

IS-IS interface costs

All interfaces have a default metric of 10

- Fine for a uniform network, but most backbones have different link capacities between routers & PoPs
- Many operators set default metric to 100000
- Many operators develop their own interface metric strategy

isis metric 100 level-2

- Sets interface metric to 100
- Care needed as the sum of metrics determines the best path through the network
- IS-IS chooses lowest cost path through a network
- IS-IS will load balance over paths with equal total cost to the same destination

IS-IS Metric Calculation

Best path/lowest cost = 11

IS-IS Metric Calculation

Best path/lowest cost = 11

• Equal cost paths = 15

IS-IS Neighbour Authentication

- Neighbour authentication is highly recommended
 - Prevents unauthorised routers from forming neighbour relationships and potentially compromising the network
- Create a suitable key-chain

```
key chain isis-as42
key 1
key-string <password>
!
```

There can be up to 255 different keys in each key chain

IS-IS Neighbour Authentication

Apply key-chain per interface:

```
interface Gigabit 4/0
isis authentication mode md5 level-2
isis authentication key-chain isis-as42 level-2
!
```

Apply key-chain to IS-IS process (all interfaces):

```
router isis as42
authentication mode md5 level-2
authentication key-chain isis-as42 level-2
!
```

Originating a Default Route (IPv4)

Always originating a default route into IS-IS:

```
router isis as42
default-information originate
```

Originate a default route into IS-IS only if a default route exists in the RIB from BGP:

```
ip access-list standard BGP-NH
  permit <ebgp neighbor address>
!
ip prefix-list DEFAULT-ROUTE permit 0.0.0.0/0
!
route-map DEFAULT-ORIG permit 10
  match ip address prefix-list DEFAULT-ROUTE
  match ip next-hop BGP-NH
!
router isis as42
  default-information originate route-map DEFAULT-ORIG
```

Originating a Default Route (IPv6)

Always originating a default route into IS-IS:

```
router isis as42
address-family ipv6
default-information originate
```

Originate a default route into IS-IS only if a default route exists in the RIB from BGP:

```
ipv6 access-list BGP-NHv6
permit ipv6 host <ebgp neighbor link-local address> any
!
ipv6 prefix-list DEFAULT-v6ROUTE permit ::/0
!
route-map DEFAULT-ORIGv6 permit 10
match ipv6 address prefix-list DEFAULT-v6ROUTE
match ipv6 next-hop BGP-NHv6
!
router isis as42
address-family ipv6
default-information originate route-map DEFAULT-ORIGv6
```

IS-IS on Point-to-Point Ethernet

□ IS-IS on point-to-point ethernet:

 DIS election is not needed on a point-to-point link – so it is disabled, which is more efficient

```
interface Gigabit 4/0
isis network point-to-point
```

 As DIS election is independent of IP, the above command is generic – there is no need for an IPv6 equivalent

Handling IPv6 in IS-IS

□ To add IPv6 support in IS-IS:

```
interface Gigabit 4/0
ipv6 router isis as42
```

Topologies:

- For single topology, nothing else is required
- For multi-topology, include:

```
router isis as42
address-family ipv6
multi-topology
```

Conclusion

IS-IS is a Link State Routing Protocol

- Quick and simple to get started
 - But has a myriad of options and features to cover almost all types of network topology
 - ISPs keep their IS-IS design SIMPLE
 - >500 routers running in L2 is entirely feasible

Introduction to IS-IS

ISP Workshops