Module 6 - iBGP and Basic eBGP

Objective: Simulate four different interconnected ISP backbones using a combination of IS-IS, internal BGP, and external BGP.

Prerequisites: Module 1 (IS-IS)

<u>Topology</u>:

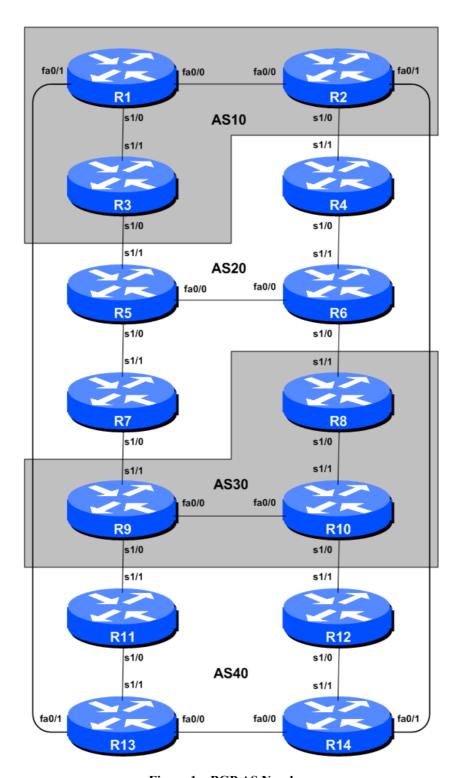


Figure 1 – BGP AS Numbers

1

Lab Notes

The purpose of this module is to introduce the student to external BGP (eBGP). This is the relationship between different autonomous systems in an "Internet". The classroom is split into four distinct networks, and the teams belonging to each network work together as a typical ISP. Each AS has two links to its neighbouring ASes, and this feature will used throughout a significant portion of this workshop.

The connectivity shown in the diagrams represents links between AS's. It is assumed that all the routers within an AS are physically connected to each other as per Figure 1.

Lab Exercises

1. The lab routers are connected as shown in Figure 1. All routers within an AS must be physically connected and reachable. The relationship between the ASes is as drawn in Figure 2 and gives a view which can be related to the "real world".

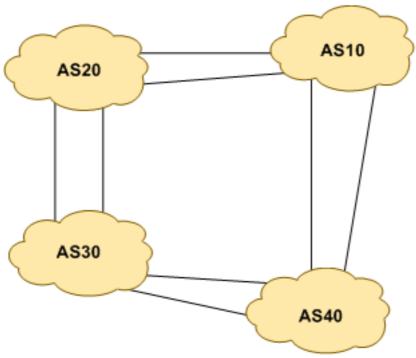


Figure 2 – AS relationship

- **2.** Clean configuration. The instructors will have erased the entire configuration of each router before starting this lab. We will rebuild the configuration from scratch, using the first 10 steps of Module 1 and then continuing from the next step. If you did not save the configuration from the previous modules, you will need to go back and look up the lab notes for the Setup portion of Module 1.
- **3. IP Addressing.** As we did in step 10 of Module 1, we need to come up with a sensible and scalable addressing plan for each AS in this network. Each AS gets their own address block, again a /20 (typical minimum allocation for a starter ISP). This address block should be assigned to links and loopbacks on the routers making up each ASN. The allocations are as follows:

AS10	10.10.0.0/20	AS30	10.30.0.0/20
AS20	10.20.0.0/20	AS40	10.40.0.0/20

Again we need to divide up each address block so that we have customer address space, network infrastructure address space, and some space for loopbacks. Figure 3 below reminds how this could be done:

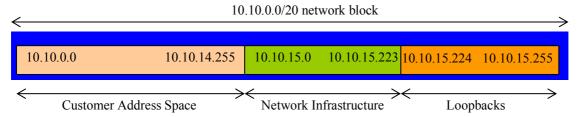


Figure 3 – Dividing allocated block of /20 into Customer, Infrastructure and Loopbacks

Please refer to the accompanying hand out for the address plan which should be used for this module onwards – it is entitled "Addressing Plan – Modules 6 to 9". As with Module 1, configure the addresses on each interface which will be used for this module, and check basic IP connectivity with your immediately adjacent neighbours.

4. Router Loopback Interface Addressing. We have set aside a /27 for loopbacks even though each AS has either 3 or 4 routers in it – this leaves more than sufficient room for future expansion. The loopback address assignments which will be used for this module are below:

Router1	10.10.15.224	Router8	10.30.15.224
Router2	10.10.15.225	Router9	10.30.15.225
Router3	10.10.15.226	Router10	10.30.15.226
Router4	10.20.15.224	Router11	10.40.15.224
Router5	10.20.15.225	Router12	10.40.15.225
Router6	10.20.15.226	Router13	10.40.15.226
Router7	10.20.15.227	Router14	10.40.15.227

5. Configure IS-IS on the routers within each AS. In each AS configure IS-IS routing. This means that each router team should configure *router ISIS* with IS-IS ID *asY* on the router, where *Y* is the AS number. And the **internal** links to each member of the AS must be configured with *ip router ISIS asY*. The NET should be *49.0001.x.x.x.00*, where *x.x.x* is built from the loopback IP address (refer to Module 1 for details).

IS-IS should be configured on internal interfaces **only**. You do not want to set up adjacencies with devices outside your AS. Make sure that there are no *ip router isis* commands on external interfaces. A side effect of this is that external link addresses will not appear in the IGP (see the next section discussion iBGP deployment).

As an example, Router 1, which has two interfaces inside AS 10, would have the following configuration:

```
Router1(config) # router isis as10
Router1(config-router) # net 49.0001.0100.1001.5224.00
Router1(config-router) # is-type level-2-only
Router1(config-router) # metric-style wide level-2
```

```
Router1(config-router) # metric 100000
Router1(config-router) # log-adjacency-changes
Router1(config-router) # set-overload-bit on-startup wait-for-bgp !
Router1(config) # interface fastethernet 0/0
Router1(config-if) # ip router isis as10
Router1(config-if) # isis metric 2 level-2
Router1(config-if) # isis circuit-type level-2-only !
Router1(config) # interface serial 1/0
Router1(config-if) # ip router isis as10
Router1(config-if) # isis metric 20 level-2
Router1(config-if) # isis metric 20 level-2
```

Note:

- Different ISPs use different NET addressing schemes. But it is common to use the router loopback IP address as the system ID in either hex or decimal format. In this module all routers in an AS are level-2 in and one area (49.0001) only.
- **6. Passive Interfaces in IS-IS.** Now mark the interfaces on which you do not want to run IS-IS as *passive*. For IS-IS, marking an interface as *passive* means that CLNS adjacencies are not solicited **and** the IP subnet used on the interface is inserted into IS-IS. For this lab we are only going to mark the Loopback interface as passive. Note that you cannot mark interfaces as passive until you have IS-IS assigned to at least one physical interface on the router (as you did in Step 5). The example for Router1 is below:

```
Router1(config) # router isis as10
Router1(config-router) # passive-interface Loopback0
```

Interface Rules:

- 1. "ip router isis" on an interface means that CLNS adjacencies are sought and the IP subnet used on the interface is inserted into IS-IS.
- 2. "passive interface" in the IS-IS process for an interface on the router means that no CLNS adjacencies are sought, but the IP subnet used is inserted into IS-IS.
- 3. No IS-IS configuration for the interface means that no CLNS adjacencies are sought, and no IP subnet used on the interface is put into IS-IS.

Note:

- IS-IS by default will only set up adjacencies and announce the prefixes of the interfaces which are activated by the "ip router isis" command. This is different behaviour from OSPF which will attempt to set up adjacencies on interfaces covered by the network statement (and hence require the use of passive and no passive to control its behaviour).
- 7. **IS-IS on Point-to-Point Ethernet Links.** One feature mentioned in the IS-IS presentations was the option to modify IS-IS's behaviour on point-to-point broadcast media links, such as Ethernet, when there are only two devices on that media. If we declare such a situation to be point to point, then IS-IS does not try and determine a designated router; furthermore, there will be an improvement/simplification in SPF calculations and memory requirements on the router.

Those router teams who have IS-IS configured on an **internal** Ethernet interface should now convert IS-IS to point-to-point mode, for example:

```
Router1(config) # interface fastethernet 0/0
Router1(config-interface) # isis network point-to-point
```

The link is now treated like a point-to-point serial connection. Note that there is no need to configure point-to-point mode on an Ethernet interface which is not running ISIS.

- **8. Ping Test.** Check the routes via IS-IS. Make sure you can see all the networks within your AS, and see no networks from other ASs. Ping all loopback interfaces within your AS Set. Use the "show clns neighbor" and "show ip route" commands.
- **9. Telnet source address.** Most ISPs use the router Loopback address for administrative purposes as well as the anchor point for their network's iBGP sessions. In this step we will configure telnet so that it uses the loopback interface as the source address for all telnet packets originated by the router.

```
Router1(config)# ip telnet source-interface loopback 0
```

To check that this has worked, telnet from your router to a neighbouring router and then enter the "who" command. You will see that you are logged in, and the source address will be displayed. For example, using telnet from Router1 to Router3 gives:

```
Router3>who
Line User Host(s)

* 2 vty 0 isplab idle

* 00:00:00 10.10.15.224
```

10. Save the configuration. Don't forget to save the configuration to NVRAM!

Checkpoint #1: call the lab assistant to verify the connectivity.

11. Turning on neighbour authentication for IS-IS – Part 1. IS-IS supports neighbour authentication; this is considered more and more important inside ISP networks as attacks on infrastructure increase and ISPs seek to use all available tools to secure their networks. (While an attack on IS-IS is harder as it runs on the link layer alongside IP rather than on top of IP like OSPF, some ISPs are still prudent and implement neighbour authentication.)

Each router team will now turn on neighbour authentication for IS-IS. The first step is to set up the keychain to be used – we will use the key "labnetpw" for this lab:

```
Router1(config) # key chain lab-key
Router1(config-keychain) # key 1
Router1(config-keychain-key) # key-string labnetpw
```

12. Turning on neighbour authentication for IS-IS – Part 2. Now that the keychain has been defined, we activate authentication within the IS-IS processes. The first step is to enable MD5 for level-2 IS's:

```
Router1(config) # router isis as10
Router1(config-router) # authentication mode md5 level-2
```

And then associate the key-chain we defined earlier with the configured authentication:

```
Router1(config-router)# authentication key-chain lab-key level-2
```

Notice now that the IS-IS adjacencies do not come up unless the neighbouring router has also entered the same configuration and key. Notice also how the IS-IS adjacencies were reset as the configuration was entered – security is being introduced, so the adjacencies are reset.

13. Final check. Use the various "*show isis*" commands to see the IS-IS status of the lab network now. Check the routing and the routing table. Make sure all the adjacencies have come back up again. If any adjacency has failed to come up, and you see several log messages saying:

```
*Dec 4 13:01:01.932: %CLNS-4-AUTH_FAIL: ISIS: LAN IIH authentication failed *Dec 4 13:03:19.955: %CLNS-4-AUTH_FAIL: ISIS: LSP authentication failed *Dec 4 13:03:50.111: %CLNS-4-AUTH FAIL: ISIS: PSNP authentication failed
```

you should reasonably expect that either you or your connected neighbour have forgotten to set up neighbour authentication.

Note: Wherever an IS-IS session is configured from now on in the workshop, all Router Teams MUST use passwords on these IS-IS sessions.

Checkpoint #2: call the lab assistant to verify the connectivity.

14. Configure iBGP peering between routers within an AS. Use the loopback address for the iBGP peerings. Also, configure the *network* command to add the address block assigned to each Router Team for advertisement in BGP.

```
Router1(config) # router bgp 10
Router1(config-router) # distance bgp 200 200 200
Router1(config-router) # no synchronization
Router1(config-router) # network 10.10.0.0 mask 255.255.240.0
Router1(config-router) # neighbor 10.10.15.225 remote-as 10
Router1(config-router) # neighbor 10.10.15.225 update-source loopback 0
Router1(config-router) # neighbor 10.10.15.225 next-hop-self
Router1(config-router) # neighbor 10.10.15.225 description iBGP Link to R2
Router1(config-router) # neighbor 10.10.15.226 remote-as 10
Router1(config-router) # neighbor 10.10.15.226 update-source loopback 0
Router1(config-router) # neighbor 10.10.15.226 next-hop-self
Router1(config-router) # neighbor 10.10.15.226 description iBGP Link to R3
Router1(config-router) # no auto-summary
Router1(config-router) # exit
Router1(config) # ip route 10.10.0.0 255.255.240.0 Null0
```

- **15. Next-hop-self configuration.** The previous step introduced the next-hop-self configuration command. Referring to the BGP presentation, the next-hop-self configuration makes the iBGP speaking router use the iBGP source address (in this case the loopback) rather than the external next-hop address (as per the BGP specification). This is industry best practice and means that ISPs do not need to carry external next-hops in their IGP.
- **16. Test internal BGP connectivity.** Use the BGP Show commands to ensure you are receiving everyone's routes from within your AS.
- **17. Configure Deterministic MED.** Another industry best practice is to configure deterministic MED for BGP. This means that IOS will order by AS Number the same prefix heard from multiple paths, and do the best path selection per ASN group. The IOS default is to compare the paths for the same

prefix from most recent to the oldest, which can result in non-deterministic (ie different) path selection each time the path selection process is run. For example, for Router5:

```
Router5(config) # router bgp 20
Router5(config-router) # bgp deterministic-med
```

Note that it is unlikely that deterministic MED will have any impact on the path selection for this Module. However, it is an industry best practice now, and network operators should include it in their BGP configuration template by default.

18. Configure passwords on the iBGP sessions. Passwords should now be configured on the iBGP sessions. Review the presentation why this is necessary. Agree amongst all your team members in your AS what the password should be on the iBGP session, and then apply it to all the iBGP peerings on your router. For example, on Router2's peering with Router3, with "bgp-pw" used as the password:

```
Router2(config) # router bgp 10
Router2(config-router) # neighbor 10.10.15.226 password bgp-pw
```

IOS currently resets the iBGP session between you and your neighbouring router whenever an MD5 password is added. So when passwords are added to BGP sessions on live operational networks, this work should be done during a maintenance period when customers know to expect disruptions to service. In the workshop lab, it doesn't matter so much. (Future IOS releases will avoid having this rather serious service disruption.)

Watch the router logs – with the BGP session neighbour changes being logged, any mismatch in the password should be easy to spot. A missing password on one side of the BGP session will result in the neighbouring router producing these errors:

```
%TCP-6-BADAUTH: No MD5 digest from 3.3.3.3:179 to 2.2.2.2:11272
%TCP-6-BADAUTH: No MD5 digest from 3.3.3.3:179 to 2.2.2.2:11272
%TCP-6-BADAUTH: No MD5 digest from 3.3.3.3:179 to 2.2.2.2:11272
```

whereas a mismatch in the configured passwords will result in these messages:

```
TCP-6-BADAUTH: Invalid MD5 digest from 3.3.3.3:11024 to 2.2.2:179 TCP-6-BADAUTH: Invalid MD5 digest from 3.3.3.3:11024 to 2.2.2.2:179 TCP-6-BADAUTH: Invalid MD5 digest from 3.3.3.3:11024 to 2.2.2.2:179
```

<u>Checkpoint #3:</u> Call the lab assistant and demonstrate the password as set on the iBGP session. Once confirmed by the lab assistant, move on to the next steps.

19. Configure eBGP peering. Use Figure 1 to determine the links between the AS's. Addressing for eBGP links between 2 AS's will use the point-to-point interface addresses, *NOT* the loopback addresses (review the BGP presentation if you don't understand why).

```
Router1(config) # router bgp 10
Router1(config-router) # neighbor 10.10.15.14 remote-as 40
Router1(config-router) # neighbor 10.10.15.14 description eBGP to Router13
```

Use the BGP Show commands to ensure you are sending and receiving the BGP advertisements from your eBGP neighbours.

- **Q.** Why can't the loopback interfaces be used for the eBGP peerings?
- **A.** The IP address of a router's loopback interface is not known to external BGP peers, so the external peers will have no way of knowing how to contact each other to establish the peering.
- **Q.** Which BGP show command allows you to see the state of the BGP connection to your peer?
- **A.** Try *show ip bgp neighbor* x.x.x.x this will give detailed information about the state of the peer. There are subcommands of this one, giving more information about the peering.
- **Q.** Which BGP Show command will allow you to see exactly which networks you are advertising and receiving from your eBGP peers?
- **A.** Try *show ip bgp neighbor x.x.x.x route* this will show which routes you are receiving from your peer. Likewise, replacing *route* with *advertised-routes* will list the networks which are being announced to your peer. (Note that in general ISP operational practice, there are caveats here if you apply route-maps and some BGP policies, these will not be processed by the *advertised-routes* command. Use the *advertised-routes* subcommand with due caution.)
- **20. Configure passwords on the eBGP session.** Passwords should now be configured on the eBGP sessions between your and your neighbouring ASes. Agree between you and your neighbouring AS what the password should be on the eBGP session, and then apply it to the eBGP peering. For example, on Router2's peering with Router4, with "bgp-pw" used as the password:

```
Router2(config)# router bgp 10
Router2(config-router)# neighbor 10.10.15.10 password bgp-pw
```

As previously for the iBGP session, watch the logs for password mismatches, or missing passwords. As with the iBGP sessions previously, you will find that the router will reset the eBGP session as soon as the password is applied.

Note: Wherever a BGP (either iBGP or eBGP) session is configured from now on in the workshop, all Router Teams MUST use passwords on these BGP sessions.

<u>Checkpoint #4:</u> Call the lab assistant and demonstrate the password as set on the eBGP session. Once confirmed by the lab assistant, move on to the next steps.

21. Adding a "customer" route into BGP. As we did in Module 1, we are now going to add a "customer" route into BGP on each router. We don't have any "customers" as such connected to our routers in the lab, so we are going to simulate the connectivity by simply using a Null0 interface. The "customer" address space that each router team will introduce into the iBGP is listed below – again we will each use a /26, for simplicity's sake.

R1	10.10.0.0/26	R4	10.20.0.0/26
R2	10.10.0.64/26	R5	10.20.0.64/26
R3	10.10.0.128/26	R6	10.20.0.128/26

R7	10.20.0.192/26	R11	10.40.0.0/26
R8	10.30.0.0/26	R12	10.40.0.64/26
R9	10.30.0.64/26	R13	10.40.0.128/26
R10	10.30.0.128/26	R14	10.40.0.192/26

Each team should now set up a static route pointing to the **NULL0** interface for the /26 that they are to originate. Once the static is set up, the team should then add an entry into the BGP table. Here is an example for Router8:

```
Router8(config)# ip route 10.30.0.0 255.255.255.192 Null0 Router8(config)# router bgp 30 Router8(config-router)# network 10.30.0.0 mask 255.255.255.192
```

22. Check the BGP table. Are there routes seen via *show ip bgp*? If not, why not? Once every team in the class has done their configuration, each team should see the aggregate from each AS as well as the fourteen /26s introduced in the previous step. If this is not happening, work with your neighbours to fix the problem.

<u>Checkpoint #5:</u> Call the lab assistant to verify the connectivity. Use commands such as "show ip route sum", "show ip bgp sum", "show ip bgp", "show ip route", and "show ip bgp neigh x.x.x.x route | advertise". There should be 4 aggregate prefixes (one for each ISP) and the 14 customer /26's in the BGP table.

- **23. The Importance of Aggregation.** Each AS was allocated a /20 address block. It is expected by all Internet operators that any address space an ISP is using is aggregated as much as possible before it is announced to the rest of the Internet. Subdividing the address space inside an AS is perfectly acceptable and obviously very common (as we have done here) but most operators consider leaking this subdivided address space out to the Internet at large antisocial and unfriendly.
 - **Q.** How do you automatically aggregate via BGP smaller address blocks from within your network to a larger address block outside your network? *Hint:* Review the BGP documentation.
 - **A.** The "aggregate-address" command is quite often used to achieve this.

We are not doing any filtering or limitation of the announcements of the "customer" address blocks we have introduced into each ASN. This will be one of the goals of the next modules in the workshop.

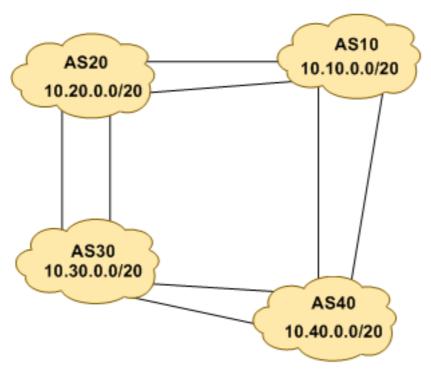


Figure 4 - Aggregates for each ASN

24. BGP Update Activity (Optional). Use *debug ip bgp update* to see BGP update activity after clearing a BGP session. To stop the debug running, do *undebug ip bgp update*.

Warning: it might not be such a good idea to run this debug command on a router receiving the full Internet routing table; using this command in a lab network such as this might show you why!

Review Questions

- 1. How many *origin types* exist in BGP?
- 2. List the origin types. **Hint:** Review the BGP presentations.
- **3.** How are they used?
- **4.** Why are passwords necessary on both iBGP and eBGP sessions? What do they protect against?
- **5.** Why is aggregation important for the Internet?