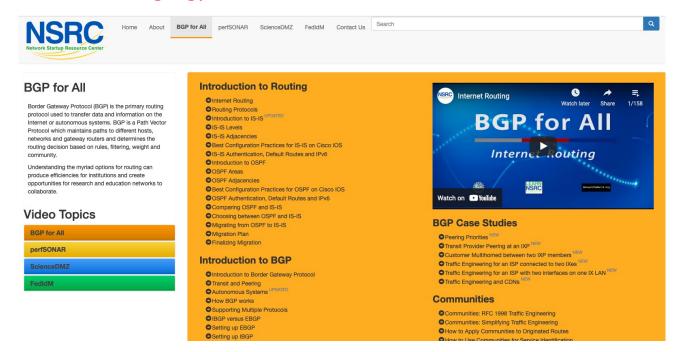
Unicast Reverse Path Forwarding

ISP Workshops

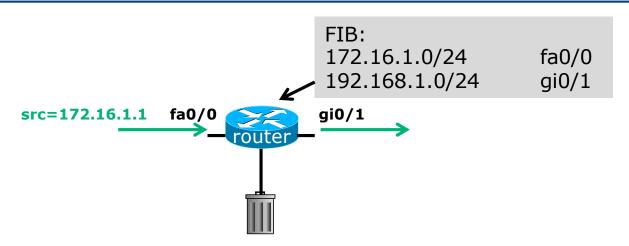

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

Acknowledgements

- This material originated from the Cisco ISP/IXP Workshop Programme developed by Philip Smith & Barry Greene
- Use of these materials is encouraged as long as the source is fully acknowledged and this notice remains in place
- Bug fixes and improvements are welcomed
 - Please email workshop (at) bgp4all.com

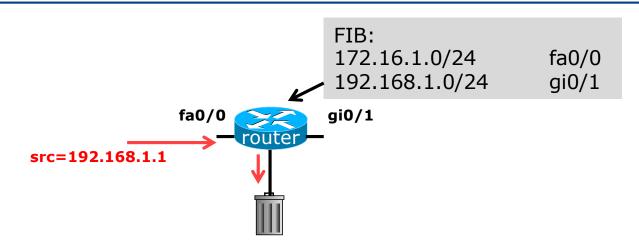
BGP Videos

- NSRC has produced a library of BGP presentations (including this one), recorded on video, for the whole community to use
 - https://learn.nsrc.org/bgp


Unicast Reverse Path Forwarding

- uRPF is a technique where the router can discard packets with invalid/fake/incorrect source addresses by a simple check against the Forwarding Table (FIB)
 - More efficient than implementing ingress packet filters
- □ Part of BCP 38
 - https://tools.ietf.org/html/bcp38
- uRPF is a very effective tool to assist with defeating Denial of Service attacks, at source
 - Implemented by network operators on access devices, where end-users and end-devices connect to their network

uRPF

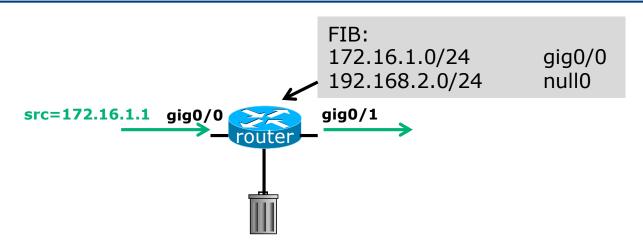

- There are two modes for uRPF:
 - Strict Mode
 - Source address must be reachable via the source (incoming) interface
 - Typically used in Access Networks
 - Loose Mode
 - Source address must be in the FIB
 - Typically used to drop non-routed address space
 - Used when asymmetric traffic flows are present (for example, when multihoming)
 - Used to implement source-based Remotely Triggered Blackhole Filtering

uRPF: Strict Mode

- Router compares source address of incoming packet with FIB entry
 - If FIB entry interface matches incoming interface, the packet is forwarded
 - If FIB entry interface does not match incoming interface, the packet is dropped

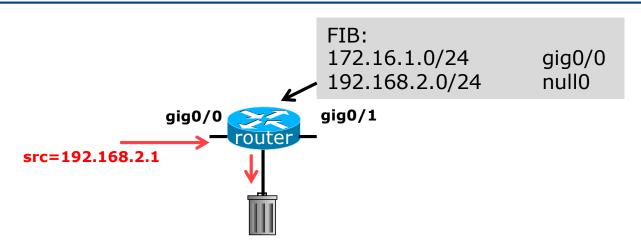
uRPF: Strict Mode

- Router compares source address of incoming packet with FIB entry
 - If FIB entry interface matches incoming interface, the packet is forwarded
 - If FIB entry interface does not match incoming interface, the packet is dropped


Configuring Strict Mode uRPF:

```
interface FastEthernet 0/1
  ip address 192.168.0.254 255.255.255.0
  ip verify unicast source reachable-via rx allow-self-ping
  ipv6 address 2001:DB8:0:1::FF/64
  ipv6 verify unicast source reachable-via rx
!
ip route 192.168.1.0 255.255.255.0 192.168.0.1
ipv6 route 2001:DB8:1:1::/64 2001:DB8:0:1::1
!
```

- This shows an ethernet LAN with uRPF configured
 - For IPv4 and IPv6
 - For both the direct LAN, and
 - For another network connected to the LAN


■ The router's IPv4 and IPv6 FIBs would look something like this:

uRPF: Loose Mode

- Router compares source address of incoming packet with FIB entry
 - If FIB entry exists and is a non-Null interface, the packet is forwarded
 - If FIB entry does NOT exist, or the interface is Null, the packet is dropped

uRPF: Loose Mode

- Router compares source address of incoming packet with FIB entry
 - If FIB entry exists and is a non-Null interface, the packet is forwarded
 - If FIB entry does NOT exist, or the interface is Null, the packet is dropped

Configuring Loose Mode uRPF on Cisco IOS:

```
interface FastEthernet 0/1
  ip address 192.168.0.254 255.255.255.0
  ip verify unicast source reachable-via any allow-self-ping
  ipv6 address 2001:DB8:0:1::FF/64
  ipv6 verify unicast source reachable-via any
!
ip route 192.168.1.0 255.255.255.0 192.168.0.1
ipv6 route 2001:DB8:1:1::/64 2001:DB8:0:1::1
!
```

■ The router will check the entire FIB for the destination

- □ Cisco IOS allows various options:
 - reachable-via allows either
 - strict mode using the rx keyword or
 - loose mode using the any keyword
 - allow-self-ping enables the operator to use ping on the local interface to check local link connectivity
 - Without allow-self-ping it would not be possible to ping the local interface address from the router
 - In loose mode, the allow-default option allows a successful match against the default route
 - Access-lists to cover selective uRPF checks

Deployment advice

- Implement uRPF on all single-homed customer facing interfaces
 - Cheaper (CPU & RAM) than implementing packet filters
- Make uRPF a default setting in all access router templates
- In the case of Multihomed connections, the deployment of uRPF needs very careful planning
 - Asymmetric traffic flows are common
 - Strict mode needs the BGP Weight feature (at minimum)
 - Loose mode ensures uRPF can be implemented

Summary

- uRPF has been available in major vendor implementations since the late 1990s
- More documentation contained in BCP38
 - https://tools.ietf.org/html/bcp38
- Implementation of uRPF is an essential technique for assisting with defeating Denial of Service attacks
- One of the principles in the MANRS initiative
 - https://www.manrs.org/manrs

Unicast Reverse Path Forwarding

ISP Workshops