Address Space Allocation

This document describes the IP address plan we will use for this set of workshop exercises.

1/3

Wherever possible the plan tries to replicate real life as closely as possible.

The IPv4 address space used in these exercises is from subnets of 100.64.0.0/10 which is an [IPv4 Shared Address](https://tools.ietf.org/html/rfc6598) block. It must not be routed on the Internet.

Note that 2001:DB8::/32 is the [IPv6 Documentation Address](https://tools.ietf.org/html/rfc3849) block. It must not be routed on the Internet.

And finally note that the 2001:10::/28 address block has been listed in the [IANA special registry](http://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml) for future use. **It must not be routed on the Internet.**

If using these labs as inspiration for your own infrastructure design, please replace all instances of private, documentation, and unassigned address space with your own address blocks.

End-Site networks

If they are not a Regional Internet Registry member, end-site networks typically will receive a public IPv6 /48 and a very small public IPv4 block from their network operator.

We will use an IPv4 /24 for these exercises, reflecting the fact that in reality an end-site organisation will use a large private block like a /16 internally, NATed out into a small public IPv4 block like the /24 we are using here.

Group	Public IPv4	IPv6	ASN
1	100.68.1.0/24	2001:DB8:1::/48	10
2	100.68.2.0/24	2001:DB8:2::/48	20
3	100.68.3.0/24	2001:DB8:3::/48	30
4	100.68.4.0/24	2001:DB8:4::/48	40
5	100.68.5.0/24	2001:DB8:5::/48	50
6	100.68.6.0/24	2001:DB8:6::/48	60

The list will continue in the same pattern if there are more groups.

Each group will then further partition their space as follows:

IPv4	IPv6	Description
100.68.X.0/24	2001:DB8:X::/48	Group address block
100.68.X.0/26	2001:DB8:X:0000::/50	Infrastructure space
100.68.X.0/28	2001:DB8:X:0000::/64	Router loopbacks
100.68.X.16/28	2001:DB8:X:0010::/60	Point-to-point links
100.68.X.64/26	2001:DB8:X:4000::/50	End user space 1

Last update: 2018/03/19 17:45 training:apnic-ipv6-nc:address-plan https://bgp4all.com/pfs/training/apnic-ipv6-nc/address-plan?rev=1521441926

IPv4	IPv6	Description
100.68.X.128/26	2001:DB8:X:8000::/50	End user space 2
100.68.X.192/26	2001:DB8:X:C000::/50	End user space 3

Where X is your group number (1,2,3...).

Prefixes for point-to-point links will be of length /30 for IPv4 and /127 for IPv6 (we will adopt the recommendations of [RFC6164](https://tools.ietf.org/html/rfc6164) for IPv6 inter-router links where we reserve a /64 for the link but subnet it as a /127):

IPv4	IPv6	Description
100.68.X.16/30	2001:DB8:X:10::/127	P2P CX ↔ BX
100.68.X.20/30	2001:DB8:X:11::/127	P2P CX ↔ PX
100.68.X.24/30	2001:DB8:X:12::/127	P2P CX ↔ AX

Router loopback address subnet masks will be /32 for IPv4 and /128 for IPv6:

IPv4	IPv6	Description
100.68.X.1/32	2001:DB8:X::1/128	BX Loopback
100.68.X.2/32	2001:DB8:X::2/128	CX Loopback
100.68.X.3/32	2001:DB8:X::3/128	PX Loopback
100.68.X.4/32	2001:DB8:X::4/128	AX Loopback

Note that the convention used here assigns the beginning of the IPv4 and IPv6 address space for use for infrastructure. This is generally a matter of choice: some network operators use the beginning of the space, others use the end of the space.

Transit Providers

Commercial network operators receive at minimum an IPv6 /32 from their regional internet registry. IPv4 allocations can range upwards from /22. We will use an IPv4 /16 for our exercises.

Transit Provider	IPv4	IPv6	ASN
1	100.121.0.0/16	2001:18::/32	121
2	100.122.0.0/16	2001:19::/32	122

The point-to-point link addresses from Transit Providers 1 and 2 to the End-sites are listed next. Note that the Transit Providers will get the low address, and the end-site gets the high address in the subnet.

Group	IPv4	IPv6
1	100.121.1.0/30	2001:18:0:10::/127
2	100.121.1.4/30	2001:18:0:11::/127
3	100.121.1.8/30	2001:18:0:12::/127
4	100.122.1.0/30	2001:19:0:10::/127
5	100.122.1.4/30	2001:19:0:11::/127
6	100.122.1.8/30	2001:19:0:12::/127

Note: The numbering started at the second /24 for the IPv4 point-to-point links to "end customers". The first /24 is kept for number infrastructure within the ISP, for example: loopbacks, internal point-to-point links, etc. The same applies to IPv6, where the first sixteen /64s were kept for loopbacks (the first /64) and internal point-to-point links (the next fifteen /64s).

The address for the point to point link between Regional ISP 1 and Regional ISP 2 is given in this table:

Link	IPv4	IPv6
Transit 1 to Transit 2	100.121.0.0/30	2001:18:0:0::/127

Back to Agenda page

From: https://bgp4all.com/pfs/ - **Philip Smith's Internet Development Site**

Permanent link: https://bgp4all.com/pfs/training/apnic-ipv6-nc/address-plan?rev=1521441926

Last update: 2018/03/19 17:45