
RPKI Operations

ThaiNOG 4
24th May 2022

Carlton Hotel | Bangkok Sukhumvit

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(http://creativecommons.org/licenses/by-nc/4.0/)

Last updated 22nd May 2022

Background
• Most operators know to sign their ROAs (Route Origin

Authorisations)
– Major push by all five Regional Internet Registries
– Major awareness effort by MANRS (https://www.manrs.org)
– Efforts by many across the Internet operations community

• But what about making use of these ROAs?
– What needs to be done?
– How does a network operator deploy?
– Which operators need to deploy?

Mutually Agreed Norms for Routing Security
• Implement the MANRS recommendations:

– Prevent propagation of incorrect routing information
• Filter BGP peers, in & out!

– Prevent traffic with spoofed source addresses
• BCP38 – Unicast Reverse Path Forwarding

– Facilitate communication between network operators
• NOC to NOC Communication
• Up-to-date details in Route and AS Objects, and PeeringDB

– Facilitate validation of routing information
• Route Origin Authorisation using RPKI

3

RPKI Operations
• The three steps towards using RPKI every day:

1. Deploy validators
2. EBGP speaking routers talk with validators
3. Making decisions about dropping invalid routes

• Each step is a significant change in daily operations
– Each one should be done in turn…
– With reviews and monitoring to gain operational experience…
– And not moving to next step until satisfied…

• There are gotchas too!

Route Origin Authorisation
• A typical ROA would look like this:

• There can be more than one ROA per address block
– Allows the operator to originate prefixes from more than one AS
– Caters for changes in routing policy or prefix origin

5

Prefix 10.10.0.0/16

Max-Length /18

Origin-AS AS65534

VALIDATORS
Step 1

RPKI Validator Caches (1)
• NLnet Labs Routinator 3000

– https://www.nlnetlabs.nl/projects/rpki/routinator/
– https://github.com/NLnetLabs/routinator
– Packages available for Debian/Ubuntu, RHEL/CentOS & FreeBSD
– (Can also be built from source)

• LACNIC/NIC Mexico validator (FORT)
– https://fortproject.net/en/validator
– https://nicmx.github.io/FORT-validator/
– Packages available for Debian/Ubuntu, RHEL/CentOS & FreeBSD
– (Can also be built from source)

7

RPKI Validator Caches (2)
• RPKI-client

– https://www.rpki-client.org/
– https://tracker.debian.org/pkg/rpki-client
– RPKI repository query system (output for OpenBGPD, BIRD, json)
– For OpenBSD, with ports for Debian/Ubuntu, RHEL/CentOS, FreeBSD, macOS

• StayRTR
– https://github.com/bgp/stayrtr
– https://tracker.debian.org/pkg/stayrtr
– RPKI to Router protocol implementation (input JSON formatted VRP exports)
– (hard fork of Cloudflare GoRTR)
– Works on anything Go runs on (?)

• Note:
– RPKI-client and StayRTR are used together

8

RPKI Validator Caches (3)
• RPKI-Prover

– https://github.com/lolepezy/rpki-prover

• rpstir2
– https://github.com/bgpsecurity/rpstir2

• The following are no longer maintained – please don’t use them!
– Dragon Research Labs “rcynic”
– Cloudflare validator (OctoRPKI/GoRTR)

• StayRTR is a fork of GoRTR

– RIPE NCC validator

9

Installing a validator
• Three validators are widely used

– Routinator
– FORT
– RPKI-client/StayRTR

• Listed in order of ease of installation 😀
• For installation details on Ubuntu 20.04

– https://bgp4all.com/pfs/hints/rpki

10

Validator Deployment
• Deploy at least two Validator Caches
• Geographically diverse
• At least two different implementations

– For software independence
– Standards interpretation

• Implement each on a Linux container so that the container can be moved
around as required

• Configure validator to listen on both IPv4 and IPv6
– Configure routers with both IPv4 and IPv6 validator connections

• Securing the validator: Only permit routers running EBGP to have access to
the validators

11

Monitor the Validator
• To get an understanding of what is going on, monitor the

validators:
– What does the validation cache look like?

• Routinator has a web interface to let you see the cache
• RPKI-client’s JSON output?

– What is their start-up time like?
• Routinator & FORT sync the caches each time the process starts – so it can be 15-

20 minutes before they are ready to serve data to any router
• RPKI-client and StayRTR are independent processes – and StayRTR is ready as

soon as it is started, using the latest dataset built by RPKI-client
– What are the memory, CPU, and physical storage resources like?

• Validation data currently requires about 2.2Gbytes of storage (and growing)

VALIDATOR TO ROUTER
Step 2

Connecting Validators to Routers
• Significant step, as this is touching the operating network

– Deploying a validator had no operational impact

• Only configure EBGP speaking routers to talk to the validators
– Routers receive VRPs (Validated ROA Payloads)

• Nothing to be gained by:
– Configuring IBGP speakers to talk to validators

• Route Origin Validation (Step 3) is done at the edge
• The core never needs to know, invalids not sent there!

– Propagating validation information through IBGP

Connecting Validators to Routers
• Be very aware of vendor default behaviour!!
• The ideal behaviour is:

– Router creates internal validation database
– Operator configures policy that flags what is Valid, Invalid, and NotFound in the

BGP RIB
– Operator configured policy that determines if invalid routes are dropped or

propagated

• Cisco IOS-XE/XR has very different behaviour from JunOS, BIRD,
and FRrouting
– https://bgp4all.com/pfs/hints/rpki

• What does your implementation do?

Connecting Validators to Routers
• How does your implementation react to changes in validation info?

– For example: route changes from invalid to valid or notfound
– Does it send a Route Refresh to peers?
– Or does it maintain an ADJ-RIB-IN?

• BGP table separate from the active BGP RIB
• Cisco IOS “soft-reconfiguration” knob is similar

• It’s important not to rely on Route Refresh to implement VRP
changes
– More and more frequent changes cause more and more refresh requests to peers,

consuming peer CPU resources – potentially a denial of service attack on the peer
– Recommended reading:

• https://datatracker.ietf.org/doc/draft-ymbk-sidrops-rov-no-rr/

Connecting Validators to Routers
• Considerations:

– Can you work around the vendor defaults to get the behaviour you want just to
monitor what is valid/invalid/notfound

– How many validators do you need (minimum of 2 recommended)
– How to deal with validator start-up time (Routinator & FORT)
– What about VRP differences between validators?

• https://bgp.nsrc.org/REN/rpki/validator.state.html

• Monitoring phase:
– Check the validation database on the router
– Look for prefixes in BGP table marked as invalid

• (But don’t throw anything away)
– Consider potential customer impact?

ROUTE ORIGIN VALIDATION
Step 3

Route Origin Validation
• Final deployment step: turn on ROV!

– Treat the same way as any major BGP policy change – planned maintenance!

• Where first?
– BGP Customers
– Private Peers
– Public Peers (IXP)
– Transit Providers (Upstreams)

– Or all EBGP peers regardless?

Route Origin Validation
• And plan what needs to be done on the routers
• For Cisco IOS-XE

– Remove on all EBGP speaking
routers

• For Juniper/FRR/BIRD/…
– Implement policy to drop invalids

• Inbound on EBGP peer, but then operator will never see invalids on edge routers
• Outbound on all BGP peers, so that invalids are never propagated

• For more deployment details & hints:
– https://bgp4all.com/pfs/hints/rpki

bgp bestpath prefix-validate allow-invalid

Route Origin Validation
• Information!

– NOC & Customer Support needs to be fully aware
• Monitor!

– Any changes in paths used or traffic loads on external links?
– How to handle these changes?

• End-users may observe connectivity or path change issues
– Prefixes marked as Invalid because the origin ROA was not set up

properly (e.g. aggregate has ROA, subnet does not)

Concluding thoughts
• Who needs to do this?

– Those interested in helping prevent the propagation of invalid routing information

• Transit Providers:
– Live in the default free zone (usually)
– Provide transit to other ASes → Need to do ROV

• IXPs:
– The IX Route Servers → Need to do ROV

• CDNs & Cloud Providers:
– Connect to large numbers of peers → Recommended to do ROV

• Access Providers:
– Are usually multihomed to two or more upstreams, and have default routes
– No need to do ROV (because of default) but may want to monitor invalid prefixes they receive

Summary
• The three operational steps need to fully deploy RPKI based

Route Origin Validation

1. Setting up validators
2. Routers talking to validators
3. Router Origin Validation

• And some of the operational considerations around these

