
BGP Policy Control

ISP Workshops

1Last updated 11th May 2021

These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license
(http://creativecommons.org/licenses/by-nc/4.0/)

Acknowledgements
p This material originated from the Cisco ISP/IXP Workshop

Programme developed by Philip Smith & Barry Greene
n Acknowledgements to Patrick Okui for the JunOS examples

p Use of these materials is encouraged as long as the source is fully
acknowledged and this notice remains in place

p Bug fixes and improvements are welcomed
n Please email workshop (at) bgp4all.com

2
Philip Smith

BGP Videos
p NSRC has produced a library of BGP presentations (including this

one), recorded on video, for the whole community to use
n https://learn.nsrc.org/bgp

3

Overview
p Organisations tend to have particular non-technical

routing policies
n A circuit may be preferred because it is cheaper
n A circuit may be preferred because the traffic by regulation

must stay within a certain jurisdiction or country
p BGP in this case is more of a policy tool than the typical

routing protocol which just tries to find the best technical
route

4

Overview: Applying Policy with BGP
p You can accept a prefix announcement, meaning that

traffic to that destination will flow towards whoever
advertised it to you

p You can reject a prefix announcement, meaning that
traffic to that destination will not flow towards whoever
advertised it to you

p Similarly for prefixes you announce, if they are accepted
then traffic to those destinations will flow towards you

5

Overview: Applying Policy with BGP
p In addition to the prefix itself you can make similar

filtering decisions based on the AS_PATH attribute or
which communities have been applied to the prefix
announcements

p Once you have decided to accept a prefix you can
optionally set other BGP attributes that will affect how
preferred the announcement will be in your network

p This can be complex or simple and the goal is to
influence the router based on the BGP path selection
algorithm

6

Overview: Applying Policy with BGP
p Tools to do this are:

n Cisco’s “prefix-list” for filtering BGP prefixes
n Juniper also has prefix-lists but the direct equivalent would be

the “route-filter”
n Cisco’s filter lists for filtering AS-PATHs
n Juniper has AS-PATH regular expressions

p For more advanced policy requirements:
n Route-maps for Cisco IOS
n BGP Policy statements for Juniper

7

Policy Control – Prefix List
p Incremental configuration
p Applies Inbound or Outbound
p Based upon network numbers (using familiar IP address/mask

format)
p Prefix-list ends with an implicit default deny

p Using access-lists in Cisco IOS for filtering prefixes was deprecated
long ago
n Strongly discouraged!

p Note: JunOS equivalent is called “route-filter”
8

Cisco Prefix Lists – Command Syntax
p Syntax:

[no] ip[v6] prefix-list list-name [seq value] permit|deny
network/len [ge value] [le value]

network/len: The prefix and its length
ge value: “greater than or equal to”
le value: “less than or equal to”

p Both “ge” and “le” are optional
n Used to specify the range of the prefix length to be matched for prefixes

that are more specific than network/len

p Sequence number is also optional
n no ip[v6] prefix-list sequence-number to disable display of sequence

numbers
9

Juniper Route-lists – Command Syntax
p route-filter prefix match-type { action; }

n prefix is the network and its length we’d like to match
n match-type is a group of optional keywords that further match

prefixes out of the described network
n { action; } is an optional set of actions to apply if this route-

list matches

10

Match Type Match Condition
exact Matches exactly

longer Matches subnets only
orlonger Matches prefix and subnets

prefix-length-range X Y Matches subnet sizes X through Y
upto Y Matches all subnet sizes up to Y

Cisco Prefix Lists – Examples
p Deny default route in IPv4

p Deny default route in IPv6

p Permit the prefix 35.0.0.0/8

p Permit the IPv6 prefix 2001:DB8::/32

11

ip prefix-list EG deny 0.0.0.0/0

ip prefix-list EG permit 35.0.0.0/8

ipv6 prefix-list EG-v6 deny ::/0

ipv6 prefix-list EG-v6 permit 2001:DB8::/32

Juniper Route-filter – Examples
p Deny default route in IPv4

p Deny default route in IPv6

p Permit the prefix 35.0.0.0/8

p Permit the IPv6 prefix 2001:DB8::/32

12

route-filter 0.0.0.0/0 exact { reject; }

route-filter 35.0.0.0/8 exact { accept; }

route-filter ::/0 exact { reject; }

route-filter 2001:DB8::/32 exact { accept; }

Cisco Prefix Lists – Examples
p Deny the prefix 172.16.0.0/12

p Deny the IPv6 prefix 3FFE::/16

p In 192/8 allow up to /24

n This allows all prefix sizes in the 192.0.0.0/8 address block, apart from /25,
/26, /27, /28, /29, /30, /31 and /32.

p In 2000::/3 allow up to /48

13

ip prefix-list EG deny 172.16.0.0/12

ip prefix-list EG permit 192.0.0.0/8 le 24

ipv6 prefix-list EG-v6 deny 3FFE::/16

ipv6 prefix-list EG-v6 permit 2000::/3 le 48

Juniper Route-filter – Examples
p Deny the prefix 172.16.0.0/12

p Deny the IPv6 prefix 3FFE::/16

p In 192/8 allow up to /24

n This allows all prefix sizes in the 192.0.0.0/8 address block, apart from /25,
/26, /27, /28, /29, /30, /31 and /32.

p In 2000::/3 allow up to /48

14

route-filter 172.16.0.0/12 exact { reject; }

route-filter 192.0.0.0/8 upto 24 { accept; }

route-filter 3FFE::/16 exact { reject; }

route-filter 2000::/3 upto 48 { accept; }

Cisco Prefix Lists – Examples
p In 192/8 deny /25 and above

n This denies all prefix sizes /25, /26, /27, /28, /29, /30, /31 and /32 in the
address block 192.0.0.0/8.

n It has the same effect as the previous example

p In 193/8 permit prefixes between /12 and /20

n This denies all prefix sizes /8, /9, /10, /11, /21, /22, … and higher in the
address block 193.0.0.0/8.

p Permit all prefixes

n 0.0.0.0 matches all possible addresses, “0 le 32” matches all possible prefix
lengths

15

ip prefix-list EG deny 192.0.0.0/8 ge 25

ip prefix-list EG permit 193.0.0.0/8 ge 12 le 20

ip prefix-list EG permit 0.0.0.0/0 le 32

Juniper Route-filter – Examples
p In 192/8 deny /25 and above

n This denies all prefix sizes /25, /26, /27, /28, /29, /30, /31 and /32 in the
address block 192.0.0.0/8.

n It has the same effect as the previous example

p In 193/8 permit prefixes between /12 and /20

n This denies all prefix sizes /8, /9, /10, /11, /21, /22, … and higher in the
address block 193.0.0.0/8.

p Permit all prefixes

n 0.0.0.0 matches all possible addresses, “/0 orlonger” matches all possible
prefix lengths

16

route-filter 192.0.0.0/8 prefix-length-range 25 32 { reject; }

route-filter 193.0.0.0/8 prefix-length-range 12 20 { accept; }

route-filter 0.0.0.0/0 orlonger { accept; }

Cisco Prefix Lists – Full Example
p Example Configuration

17

router bgp 100
address-family ipv4
network 105.7.0.0 mask 255.255.0.0
neighbor 102.10.1.1 remote-as 110
neighbor 102.10.1.1 prefix-list AS110-IN in
neighbor 102.10.1.1 prefix-list AS110-OUT out

!
ip prefix-list AS110-IN deny 218.10.0.0/16
ip prefix-list AS110-IN permit 0.0.0.0/0 le 32
!
ip prefix-list AS110-OUT permit 105.7.0.0/16
ip prefix-list AS110-OUT deny 0.0.0.0/0 le 32

Policy Control – Cisco Filter List
p Filter routes based on AS path

n Inbound or Outbound
p Referenced in BGP neighbour configuration as:

p Referenced in main configuration as:

p The as-path access-list finishes with an implicit default
deny

18

neighbor <addr> filter-list <N> [in|out]

ip as-path access-list <N> [permit|deny] ...

Cisco Filter List – Example
p Example Configuration:

19

router bgp 100
address-family ipv4
network 105.7.0.0 mask 255.255.0.0
neighbor 102.10.1.1 filter-list 5 out
neighbor 102.10.1.1 filter-list 6 in

!
ip as-path access-list 5 permit ^200$
!
ip as-path access-list 6 permit ^150$

Policy Control – Regular Expressions (IOS)
p Like Unix regular expressions

. Match one character
* Match any number of preceding expression
+ Match at least one of preceding expression
^ Beginning of line
$ End of line
\ Escape a regular expression character
_ Beginning, end, white-space, brace
| Or
() brackets to contain expression
[] brackets to contain number ranges

20

Policy Control – Regular Expressions (JunOS)
p Juniper AS regular expressions are quite similar to IOS

except that the entire AS number comprises one term
n It is not possible to reference individual characters within the AS

number, which differs from the POSIX 1003.2 definitions as
used in IOS

n This means:
p The [] operator works in a different way
p Some operators have different meanings
p There are some extra operators

21

Policy Control – Regular Expressions (JunOS)
Operator Match Definition

{m,n} At least m and no more than n repetitions of the term. n must be greater
than m.

{m} Exactly m repetitions of a term

{m,} m or more repetitions of a term

? Zero or one repetition of a term, equivalent to {0,1}

[] Set of AS numbers (rather than individual digits)

^ Character at the start of the regex. This is implicit as all regexes must
match the entire AS path so isn’t needed

$ Character at the end of the regex. This is also implicit and isn’t needed

_ Underscore is not used in JunOS AS regexes since each term is an AS
22

Policy Control – Regular Expressions (IOS)
p Simple Examples

.* match anything

.+ match at least one character
^$ match routes local to this AS
_1800$ originated by AS1800
^1800_ received from AS1800
1800 via AS1800
_790_1800_ via AS1800 and AS790
(1800)+ multiple AS1800 in sequence

(used to match AS-PATH prepends)
\(65530\) via AS65530 (confederations)

23

Policy Control – Regular Expressions (JunOS)
p Simple Examples

.* match anything

.+ match at least one character
“()” match routes local to this AS
.* 1800 originated by AS1800
1800 .* received from AS1800
.* 1800 .* via AS1800
.* 790 1800 .* via AS1800 and AS790
.* 1800+ .* multiple AS1800 in sequence

(used to match AS-PATH prepends)
.* 65530 .* via AS65530 (confederations) – no way to match the ‘(’

24

Policy Control – Regular Expressions (IOS)
p Not so simple Examples

^[0-9]+$ Match AS_PATH length of one
^[0-9]+_[0-9]+$ Match AS_PATH length of two
^[0-9]*_[0-9]+$ Match AS_PATH length of one or two
^[0-9]*_[0-9]*$ Match AS_PATH length of one or two (will also match zero)
^[0-9]+_[0-9]+_[0-9]+$ Match AS_PATH length of three
(701|1800) Match anything which has gone through AS701 or AS1800
1849(.+_)12163$ Match anything of origin AS12163 and passed

through AS1849

25

Policy Control – Regular Expressions (JunOS)
p Not so simple Examples

. Match AS_PATH length of one

. . Match AS_PATH length of two

.? . Match AS_PATH length of one or two

.? .? Match AS_PATH length of one or two (will also match zero)

. . . Match AS_PATH length of three

.* (701|1800) .* Match anything which has gone through AS701 or AS1800

.* 1849 .* 12163 Match anything of origin AS12163 and passed
through AS1849

26

Policy Control – Cisco’s Route Maps
p A route-map is like a “programme” for IOS
p Has “line” numbers, like programmes
p Each line is a separate condition/action
p Concept is basically:

if match then do expression and exit
else
if match then do expression and exit
else etc

p Route-map “continue” lets ISPs apply multiple conditions and
actions in one route-map

27

Policy Control – JunOS Policy Framework
p The same general framework is used on Juniper for

routing policy as well as firewall filtering
p Like Cisco IOS route-maps there are three components

n Match condition that select advertisements
n Actions performed if the criteria match
n A term is the actual line/statement that contain the match

conditions and actions – there can be many terms
p Unlike IOS they are not numbered
p The term does not define a “default action” as there isn’t a “permit” or a

“deny” in the term line

28

Route Maps – Rules
p Lines can have multiple set statements

n All set statements are implemented

p Lines can have multiple match statements
n All conditions must match

29

route-map SAMPLE permit 10
set community 300:1
set local-preference 120
!

route-map SAMPLE permit 10
match community MY-COMMUNITY
match ip address prefix-list MY-LIST
set local-preference 300
!

Route Maps – Rules
p A match statement can have multiple commands

n At least one command must match

p Route-map with only a match statement
n Only prefixes matching go through, the rest are dropped

30

route-map SAMPLE permit 10
match ip address prefix-list MY-LIST OTHER-LIST
set community 300:10
!

route-map SAMPLE permit 10
match ip address prefix-list MY-LIST
!

Route Maps – Rules
p Line with only a set statement

n All prefixes are matched and set
n Any following lines are ignored

31

route-map SAMPLE permit 10
set local-preference 120
!
route-map SAMPLE permit 20
remark This line is ignored
set community 300:5
!

Route Maps – Rules
p Line with a match/set statement and no following lines

n Only prefixes matching the condition are set, the rest are
dropped

32

route-map SAMPLE permit 10
match ip address prefix-list MY-LIST
set local-preference 120
!

Route Maps – Caveats
p Example

n Omitting the third line below means that prefixes not matching
list-one or list-two are dropped

33

route-map SAMPLE permit 10
match ip address prefix-list LIST-ONE
set local-preference 120
!
route-map SAMPLE permit 20
match ip address prefix-list LIST-TWO
set local-preference 80
!
route-map SAMPLE permit 30
remark Don’t forget this
!

Route Maps – Matching prefixes
p Example Configuration:

34

router bgp 100
address-family ipv4
neighbor 102.10.1.2 route-map INFILTER in

!
route-map INFILTER permit 10
match ip address prefix-list HIGH-PREF
set local-preference 120
!
route-map INFILTER permit 20
match ip address prefix-list LOW-PREF
set local-preference 80
!
ip prefix-list HIGH-PREF permit 10.0.0.0/8
ip prefix-list LOW-PREF permit 20.0.0.0/8

Route Maps – Matching prefixes
p Commentary:

n If address matches HIGH-PREF set local-pref 120, and then exit
n Otherwise if address matches LOW-PREF, set local-pref 80, and

then exit
n No other condition, so all other prefixes are dropped

35

Route Maps – AS-PATH filtering
p Example Configuration

36

router bgp 100
address-family ipv4
neighbor 102.10.1.2 remote-as 200
neighbor 102.10.1.2 route-map FILTER-ON-ASPATH in

!
route-map FILTER-ON-ASPATH permit 10
match as-path 1
set local-preference 80
!
route-map FILTER-ON-ASPATH permit 20
match as-path 2
set local-preference 200
!
ip as-path access-list 1 permit _150$
ip as-path access-list 2 permit _210_

Route Maps – AS-PATH filtering
p Commentary:

n If prefix originated from AS150, then set local-pref to 80, and
exit

n Otherwise if prefix transited AS210 (ie AS210 appears in the
path), then set local-pref to 200, and exit

n No other condition, so all other prefixes are dropped

37

Route Maps – AS-PATH prepends
p Example configuration of AS-PATH prepend

n \

p Use your own AS number when prepending
n Otherwise BGP loop detection may cause disconnects
n Deliberate insertion of other ASNs is called “AS PATH poisoning”

38

router bgp 100
address-family ipv4
network 105.7.0.0 mask 255.255.0.0
neighbor 102.10.1.2 remote-as 300
neighbor 102.10.1.2 route-map SETPATH out

!
route-map SETPATH permit 10
set as-path prepend 100 100
!

Route Maps – Matching Communities
p Example Configuration

39

router bgp 100
address-family ipv4
neighbor 102.10.1.2 remote-as 200
neighbor 102.10.1.2 route-map FILTER-ON-COMMUNITY in

!
route-map FILTER-ON-COMMUNITY permit 10
match community MY1
set local-preference 50
!
route-map FILTER-ON-COMMUNITY permit 20
match community MY2 exact-match
set local-preference 200
!
ip community-list standard MY1 permit 150:3 200:5
ip community-list standard MY2 permit 88:6

Route Maps – Matching Communities
p Commentary:

n If prefix belongs to communities 150:3 AND 200:5, then set
local-pref to 50, and exit

n Otherwise if prefix belongs to ONLY community 88:6, then set
local-pref to 200, and exit

n No other condition, so all other prefixes are dropped

40

Community-List Processing
p Note:

n When multiple values are configured in the same community list
statement, a logical AND condition is created. All community
values must match to satisfy an AND condition

n When multiple values are configured in separate community list
statements, a logical OR condition is created. The first list that
matches a condition is processed

41

ip community-list standard MY1 permit 150:3 200:5

ip community-list standard MY1 permit 150:3
ip community-list standard MY1 permit 200:5

Route Maps – Setting Communities
p Example Configuration

42

router bgp 100
address-family ipv4
network 105.7.0.0 mask 255.255.0.0
neighbor 102.10.1.1 remote-as 200
neighbor 102.10.1.1 send-community
neighbor 102.10.1.1 route-map SET-COMMUNITY out

!
route-map SET-COMMUNITY permit 10
match ip address prefix-list NO-ANNOUNCE
set community no-export
!
route-map SET-COMMUNITY permit 20
match ip address prefix-list AGGREGATE
!
ip prefix-list NO-ANNOUNCE permit 105.7.0.0/16 ge 17
ip prefix-list AGGREGATE permit 105.7.0.0/16

Route Map Continue
p Handling multiple conditions and actions in one route-map (for

BGP neighbour relationships only)

43

route-map PEER-FILTER permit 10
match ip address prefix-list GROUP-ONE
continue 30
set metric 2000
!
route-map PEER-FILTER permit 20
match ip address prefix-list GROUP-TWO
set community no-export
!
route-map PEER-FILTER permit 30
match ip address prefix-list GROUP-THREE
set as-path prepend 100 100
!

Juniper Policy Example Route Filter

44

policy-options {
policy-statement import-example {
term some-prefixes {
from {
route-filter 0.0.0.0/0 exact { reject; }
route-filter 192.0.0.0/8 upto 24;
route-filter 193.0.0.0/8 prefix-length-range 12 20;

}
then {
preference 200;
accept;

}
}
term default-deny {
then {
reject;

}
}

}
}

Juniper Policy Example AS-PATH regex

45

policy-options {
as-path from1800 “.* 1800”;
policy-statement import-example {
term filter-ases {
from {
as-path from1800;

}
then {
preference 10;

}
}

}
}

Juniper – applying to BGP session

46

protocols bgp {
export our-policy-out;
group upstreams {
type external;
export all-upstreams-out;
import incoming-upstreams;
neighbor 172.16.2.2 {
import import-example;

}
neighbor 172.20.3.1;

}
}

Order of processing BGP policy in IOS
p For policies applied to a specific BGP neighbour, the

following sequence is applied:
n For inbound updates, the order is:

1. Route-map
2. Filter-list
3. Prefix-list

n For outbound updates, the order is:
1. Prefix-list
2. Filter-list
3. Route-map

47

Managing Policy Changes in IOS
p New policies only apply to the updates going through the router

AFTER the policy has been introduced or changed
p To facilitate policy changes on the entire BGP table the router

handles the BGP peerings need to be “refreshed”
n This is done by clearing the BGP session either in or out, for example:

p Do NOT forget in or out — forgetting results in a hard reset of the
BGP session

p Note: Cisco IOS does not automatically apply policy changes after
they are added to the configuration
n Most other router operating systems will implement the route-refresh once

the policy change has been committed 48

clear ip bgp <neighbour-addr> in|out

Managing Policy Changes in IOS
p Ability to clear the BGP sessions of groups of neighbours

configured according to several criteria
p clear ip bgp <addr> [in|out]

<addr> may be any of the following:

x.x.x.x IP address of a peer
* all peers
ASN all peers in an AS
external all external peers
peer-group <name> all peers in a peer-group

49

BGP Policy Control

ISP Workshops

50

