
 ISP Workshop Lab

 1

Module 7 – BGP route filtering and advanced features

Objective: Using the network configured in Module 6, use various configuration methods on
BGP peerings to demonstrate neighbour filtering and more advanced IOS features.

Prerequisite: Module 6

Topology:

Figure 1 – BGP AS Numbers

Sunday, September 06, 2015

 2

Lab Notes

The previous Module provided an introduction to setting up external BGP, but provided no way of
controlling which networks are announced to which AS. The purpose of this module is to introduce
the student to the types of routing policy which are available using BGP.

In steps 2 to 6 we will configure each AS to become a non-transit AS, i.e. the AS won’t allow a
connecting AS’s traffic to traverse it to reach another connecting AS. This will mean disconnectivity
in the classroom – for example, AS3 will no longer be able to see any networks from AS10, etc. This
is a deliberate policy to demonstrate the effectiveness of the BGP filtering being employed.

In step 2 we achieve this by configuring an outgoing route filter to allow only local prefix(es) be sent
to eBGP peers. At the same time, we also make sure that our peers only send us their own prefixes.
We guarantee this by configuring an incoming filter. In general, it is good practice to configure filters
in both directions to protect against misconfiguration at both ends of the peering. In step 4 we use AS-
PATH filters. And in step 6 we make use of BGP communities to achieve the same effect.

Important: each step must be carried out and completed by the whole workshop before the next step
can be started. Do not immediately start the next step without receiving the go-ahead from the
workshop instructors. If you do, it is likely the routing will break, and other router teams may be
unable to understand the results of the configuration they are trying to implement.

Important: retain the configuration used for Module 6.

Lab Exercise

1. Implement BGP policies. Before doing any configurations in this module it is important to note

how to go about implementing BGP policies. Entering prefix lists, as-path filters or route-maps
can be done at the CLI, but they only apply to BGP updates received after the policy configuration
has been entered at the router. This is because BGP sends incremental updates describing changes
in routes announced or withdrawn. To apply the policy to the entire BGP routing table received
from or sent to the peer, the BGP session needs to be “reset”. In older versions of IOS, this literally
meant tearing down the BGP session, and then restoring it. However, as can be imagined, this
causes severe stability issues on the service provider network, and ‘RFC2918: Route Refresh
Capability’ has been added to most modern BGP implementations to allow graceful updates to
BGP sessions when policy changes are required.

To implement policy changes in any of the following worked examples, use the following router
commands, for example to implement new policy inbound and outbound on the peering between
Router 1 and Router 13:

Router1# clear ip bgp 10.10.15.14 out
Router1# clear ip bgp 10.10.15.14 in

Note 1: Do not forget the in and out subcommands in the above clear commands – omitting them
will implement a hard reset of the BGP session. Review the BGP presentation if you don’t
understand why you do not want to ever do a hard reset on a BGP session.

 ISP Workshop Lab

 3

Note 2: Rather than refreshing the BGP session using the neighbour IP address, it is also possible
to refer to the neighbour by its ASN. Since Router 13 is in AS40, the alternative commands would
be:

Router1# clear ip bgp 40 out
Router1# clear ip bgp 40 in

Checkpoint #1: call the lab assistant to verify the connectivity. Each router team should check
peerings to see the effect of this step. Use the “show ip bgp” command to show the BGP table –
ensure that the external prefixes learned by BGP now have a local next-hop address. Use the “trace”
command to show that network connectivity is unaffected.

Filtering using prefix-lists

2. Configure prefix filter based on network address: This step configures route prefix filtering

based on network address. This is done using prefix-lists, and is one method of controlling
networks which are exchanged in BGP peerings. The aim here is to configure eBGP peerings so
that only networks from neighbouring ASes are exchanged.

Example: Router R13 (peering with R1)

 !

ip prefix-list out-peer permit 10.40.0.0/20
ip prefix-list out-peer deny 0.0.0.0/0 le 32
!
ip prefix-list in-peer permit 10.10.0.0/20
ip prefix-list in-peer deny 0.0.0.0/0 le 32
!
router bgp 40
 no synchronization
 network 10.40.0.0 mask 255.255.240.0
 neighbor 10.10.15.13 remote-as 10
 neighbor 10.10.15.13 description eBGP peering with Router1
 neighbor 10.10.15.13 prefix-list out-peer out
 neighbor 10.10.15.13 prefix-list in-peer in
 no auto-summary
!

 Example: Router R1 (peering with R13)

!
ip prefix-list out-peer permit 10.10.0.0/20
ip prefix-list out-peer deny 0.0.0.0/0 le 32
!
ip prefix-list in-peer permit 10.40.0.0/20
ip prefix-list in-peer deny 0.0.0.0/0 le 32
!
router bgp 10
 no synchronization
 network 10.10.0.0 mask 255.255.240.0
 neighbor 10.10.15.14 remote-as 40
 neighbor 10.10.15.14 description Peering with Router13
 neighbor 10.10.15.14 prefix-list out-peer out
 neighbor 10.10.15.14 prefix-list in-peer in

Sunday, September 06, 2015

 4

 no auto-summary
!

Note: an IOS prefix-list always has an implicit deny any as the last statement even though it is not
listed in the configuration. Some ISPs add the implicit deny any as they consider it good practice
and a security precaution.

Note: these prefix-lists are only applied to peerings with other ASes. These are called external
peerings (using eBGP). There is usually no need to apply such filters for iBGP peerings.

Checkpoint #2: call the lab assistant to verify the connectivity. Each router team should check
peerings to see the effect of this step. Use the “show ip bgp neigh x.x.x.x advertise|route” commands.

STOP AND WAIT HERE

3. Remove configuration from previous example. This step will demonstrate how to remove the

configuration entered in the previous example. This is essential before we move onto the next step.

Example: Router R1

Router1#conf t
Router1(config)#router bgp 10
!
! First remove prefix list from BGP peering with R13
!
Router1(config-router)#no neighbor 10.10.15.14 prefix-list out-peer out
Router1(config-router)#no neighbor 10.10.15.14 prefix-list in-peer in
!
! Now remove the prefix-lists themselves
!
Router1(config)#no ip prefix-list out-peer
Router1(config)#no ip prefix-list in-peer
!
! That’s the configuration nice and tidy, the way it should be.
!
Router1(config)#end
!
! Now clear the bgp peering so that the old policy is removed
!

 ISP Workshop Lab

 5

Router1#clear ip bgp 40 out
Router1#clear ip bgp 40 in
Router1#

AS-PATH filters

4. Configure prefix filter based on AS path attribute: This step configures route prefix filtering

based on AS path. This is done using AS path access-lists, and is another method of controlling
networks which are exchanged in BGP peerings.

Example: Router R14 (peering with R2)

ip as-path access-list 2 permit ^$
ip as-path access-list 3 permit ^10$
!
router bgp 40
 neighbor 10.40.15.18 remote-as 10
 neighbor 10.40.15.18 filter-list 2 out
 neighbor 10.40.15.18 filter-list 3 in
!

 Example: Router R2 (peering with R14)

ip as-path access-list 2 permit ^$
ip as-path access-list 3 permit ^40$
!
router bgp 10
 neighbor 10.40.15.17 remote-as 40
 neighbor 10.40.15.17 filter-list 2 out
 neighbor 10.40.15.17 filter-list 3 in
!

Q. Why does the outbound filter list match the null as-path and not the local AS number in the
above examples?

A. Because the AS-PATH attribute is set after the prefix lists, as-path filters and route-maps. If the
local AS was included in the outbound filter-list configuration, the prefixes would be ignored as
their AS-PATH attribute would not be set at that stage.

To verify that the regular expression works as intended, use the EXEC command “show ip bgp
regexp <regular-expression>” to display all the paths that match the specified regular expression.
Don’t forget that the command clear ip bgp <neighbour address> [in|out] is required to
implement this filter.

Sunday, September 06, 2015

 6

Notice that the AS Path filters allow all prefixes originated by the neighbouring AS – in the
previous example using prefix filters, only the aggregate from the neighbouring AS got through
the filters.

Checkpoint #3: call the lab assistant to verify the connectivity. Once the lab instructor gives the class
the gohead, remove the attribute and filter list configuration and move on to the next step.

STOP AND WAIT HERE

5. Remove the configuration from the previous example. This step will demonstrate how to

remove the configuration entered in the previous example. This is essential before we move onto
the next step.

Example: Router 2

Router1#conf t
Router1(config)#router bgp 10
!
! First remove the filter list from BGP peering with R14
!
Router1(config-router)#no neighbor 10.40.15.17 filter-list 2 out
Router1(config-router)#no neighbor 10.40.15.17 filter-list 3 in
!
! Now remove the filter lists themselves
!
Router1(config)#no ip as-path access-list 2
Router1(config)#no ip as-path access-list 3
!
! That’s the configuration nice and tidy, the way it should be.
!
Router1(config)#end
!
! Now clear the bgp peering so that the old policy is removed
!
Router1#clear ip bgp 10.40.15.17 in
Router1#clear ip bgp 10.40.15.17 out
Router1#

BGP Communities for filtering (and route-maps)

6. Introduction to BGP communities and route-maps: This step introduces the Router Teams to

using BGP communities for tagging, identifying, and eventually filtering prefixes. We achieve
similar end results to what we achieved in the previous steps using prefix-list and as-path filters.

On all routers, configure BGP to send a community for all prefixes belonging to the local AS
advertised to external BGP peers. The community should be in the form of [AS number]:[Router
number]. For example, Router8 should use community 30:8.

 ISP Workshop Lab

 7

Example on Router R8:

! Display communities in 16-bit:16-bit format rather than
! as one 32-bit integer.
!
ip bgp-community new-format
!
ip prefix-list out-match permit 10.30.0.0/20 le 26
!

 route-map outfilter permit 10
 match ip address prefix-list out-match
 set community 30:8
 !
 router bgp 30
 neighbor 10.20.15.17 remote-as 20
 neighbor 10.20.15.17 route-map outfilter out
 neighbor 10.20.15.17 send-community
 !

Once the configuration has been entered for the eBGP peer, refresh the BGP session with the
eBGP peer, and then log in to your eBGP peer router (use telnet) and check that you see your
community attached to your prefixes.

Note:
1) A community attribute can be seen in the BGP table via show ip bgp <network> command.
2) A community attribute is a 32-bit field. By IETF agreed-upon convention it is divided into two

16-bit fields for easy interpretation. The top 16-bit contains the AS number, while the lower
16-bit represents an integer that has specific meaning to the two ASes involved in the peering.
The exceptions to this are the well-known community attribute strings such as no-export or
local-as.

Q: Why is send-community needed for eBGP peerings?
A: As community values are not passed by default between BGP peers, you need to tell the router
explicitly to do this.

Checkpoint #4: call the lab assistant to verify the connectivity. Each router team should again check
their peerings to see what the effect is this time.

STOP AND WAIT HERE

7. Remove the configuration from the previous example. This step will demonstrate how to

remove the configuration entered in the previous example. This is essential before we move onto
the next step.

Example: Router 8

Router8#conf t
Router8(config)#router bgp 30
!
! First remove the route-map from the eBGP peering
!
Router8(config-router)#no neighbor x.x.x.x route-map outfilter out

Sunday, September 06, 2015

 8

!
! Now remove the route-map itself
!
Router8(config)#no route-map outfilter
!
! And now remove the prefix-list used by the route-map
!
Router8(config)#no ip prefix-list out-match
!
! That’s the configuration nice and tidy, the way it should be.
!
Router8(config)#end
!
! Now clear the bgp peering so that the old policy is removed
!
Router8#clear ip bgp 20 out
Router8#

BGP Communities

8. Setting BGP Communities. In step 6 the community a network belongs to was generated at the

point where one BGP router spoke to another BGP router. While this situation is valuable in
demonstrating how to set communities, the more common scenario is where an ISP attaches a
community to a network when the network is injected into the BGP routing table.

Each router team should assign a community to the customer network block (the /26) they
originate in BGP. Review the BGP documentation to find out how to do this. Each router should
set a community of format [AS number]:[Router number] exactly as in the previous step.

Example for Router R3:

 ip bgp-community new-format
 !

route-map community-tag permit 10
 set community 10:3
 !
 router bgp 10
 no synchronization
 network 10.10.0.128 mask 255.255.255.192 route-map community-tag
 neighbor 10.20.15.1 remote-as 20
 neighbor 10.20.15.1 send-community
 no auto-summary
 !
 ip route 10.10.0.128 255.255.255.192 null0

 Check that the network appears with its community in the BGP routing table.

Q: Why do your external, but not your internal, peers see the community set on the network?
A: See earlier. All peerings require the BGP send-community subcommand for the community
attribute to be sent between BGP peers.

9. Communities on internal BGP peerings. Following on from the previous step, now set up the

internal peerings so that the community attribute for your network is sent to local peers.

 ISP Workshop Lab

 9

Hint: to do this, simply add in the configuration line neighbor x.x.x.x send-community for all iBGP
peerings. Don’t forget to refresh the BGP peering sessions so that the configuration change can be
implemented.

Checkpoint #5: call the lab assistant and demonstrate how the community has been set for your
network using the “show ip bgp” commands. Also, demonstrate that you can see the communities set
by your internal and external BGP peers.

10. Configure incoming prefix filter based on community attribute. The aim here is to only accept

networks which are received from the neighbouring external BGP peer. (This is similar to what
was being attempted in Steps 2 and 4 with prefix and AS path filtering.) For example, R13 should
only accept the network originated by R1, and should use the knowledge of the community R1 has
attached to the network to achieve this.

Example on Router R13:

ip community-list 3 permit 10:1
!
route-map infilter permit 10
 match community 3
!
router bgp 40
 neighbor 10.10.15.13 route-map infilter in
!

The community-list number choice is up to each router team – it is not announced in any BGP
peering or used in any other way apart from identifying the community-list (compare with the
access-list number).

11. Set local-preference attribute on received eBGP routes. In this example, local preference will

be set on the routes matching the community filter in Step 10. Retain the route-map used in Step
10 – an additional configuration line will be added to it. You also want to allow the other networks
heard through the filters with the local-preference set to the default value.

Q. Why?
A. Without the second permit directive the route-map implements a default deny and no other
prefixes will be passed through.

Example:

route-map infilter permit 10
 match community 3
 set local-preference 120
!
route-map infilter permit 20

Note that after a new policy is set, BGP session needs to be refreshed so that the new policy can
then be applied. The router does not automatically keep all the updates it ever received from the
peer so this is necessary. This is done by using “clear ip bgp <peer address> in” exec command.

Sunday, September 06, 2015

 10

Checkpoint #6: call the lab assistant and demonstrate how the routes originated by your eBGP peers
now have local preference set to 120. Also show how other routes have the default local preference of
100.

STOP AND WAIT HERE

BGP Peer-Groups

12. Configure the peer-group feature for iBGP peers. BGP peer-groups help reduce the router

processor load in generating and sending updates to peers which have the same policy. This step
configures BGP peer-groups for the iBGP peers in each AS. Replace the individual configuration
for each iBGP peer with a peer-group configuration, as given in the example below.

Example for Router R9:

router bgp 30
 neighbor ibgp-peers peer-group
 neighbor ibgp-peers description Peer-Group used for all iBGP peers
 neighbor ibgp-peers remote-as 30
 neighbor ibgp-peers update-source loopback 0
 neighbor ibgp-peers send-community
 neighbor ibgp-peers next-hop-self
 neighbor ibgp-peers password cisco
!

Note: the old pre-peer-group configuration must be removed before converting from non-peer-
group configuration to using peer-groups.

router bgp 30
 no neighbor 10.30.15.224
 no neighbor 10.30.15.226
!
 neighbor 10.30.15.224 peer-group ibgp-peers
 neighbor 10.30.15.226 peer-group ibgp-peers
!

Q: What are the advantages of using peer-groups?

A: BGP peer groups allow a common configuration to be used for several BGP peers. The most
common application is for iBGP. All internal BGP peers in an ISP network tend to have the same
relationship with each other. Rather than having a substantial configuration per peer, and having to
change every peering when details need to be changed, the configuration can be put in a peer-
group, and only the peer group has to be changed to alter the peering configuration for all iBGP
peers. This substantially reduces the work overhead required in making changes, the router CPU
for processing, and significantly cleans up the configuration to view.

It is strongly recommended that the peer-group subcommand be the “default” way of configuring
all BGP peers. As was stated before, most iBGP peers have the same configuration, so it is of great
benefit to the router, the operations staff, and network engineering staff to simplify the
configurations wherever possible. Besides, a configuration which makes extensive use of peer-
groups is usually much easier to read than one which has distinct configuration per peer, especially
in networks with large numbers of peers.

 ISP Workshop Lab

 11

Note: Wherever BGP is configured in future in the workshop, it is expected that peer-groups
will be used as part of the BGP configuration (and most definitely for any iBGP
configuration).

13. Summary: This module has introduced some of the basic features available to configure BGP

peerings in Cisco IOS. The reader is encouraged to try further permutations of the configuration
examples given here. Community usage is gaining in popularity as the feature is now recognised to
give considerable advantages in controlling routing policy between different ASes. Route refresh
and peer-groups are also widely used in ISP backbones as they considerably ease administration
and configuration of an operational network.

Review Questions:

1. Why is making use of Route Refresh the best way of implementing new BGP policy?

2. Why do AS-PATH filters provide less granularity then prefix-filters for filtering a BGP

session? And which is preferred in an ISP network, and why?

3. When should the community attribute be set on a BGP prefix?

4. Does IOS send BGP communities by default for iBGP? For eBGP? If not, what must operators
remember to do?

